Real-time multispectral fluorescence lifetime imaging using Single Photon Avalanche Diode arrays

被引:34
作者
Lagarto, Joao L. [1 ,2 ]
Villa, Federica [3 ]
Tisa, Simone [4 ]
Zappa, Franco [3 ]
Shcheslavskiy, Vladislav [5 ,7 ]
Pavone, Francesco S. [1 ,2 ,6 ]
Cicchi, Riccardo [1 ,2 ]
机构
[1] Natl Res Council CNR INO, Natl Inst Opt, Largo Enrico Fermi 6, I-50125 Florence, Italy
[2] European Lab Nonlinear Spect LENS, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
[3] Politecn Milan, DEIB, I-20133 Milan, Italy
[4] Micro Photon Device SRL, Via Waltraud Gebert Deeg 3g, I-39100 Bolzano, Italy
[5] Becker & Hickl GmbH, Nunsdorfer Ring 7-9, D-12277 Berlin, Germany
[6] Univ Florence, Dept Phys, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[7] Privolzhskiy Med Res Univ, Nizhnii Novgorod 603005, Russia
关键词
IN-VIVO; DIFFUSE-REFLECTANCE; LABEL-FREE; AUTOFLUORESCENCE SPECTROSCOPY; RESOLVED AUTOFLUORESCENCE; ARTICULAR-CARTILAGE; RAMAN-SPECTROSCOPY; DIAGNOSIS; SYSTEM; MATRIX;
D O I
10.1038/s41598-020-65218-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Autofluorescence spectroscopy has emerged in recent years as a powerful tool to report label-free contrast between normal and diseased tissues, both in vivo and ex vivo. We report the development of an instrument employing Single Photon Avalanche Diode (SPAD) arrays to realize real-time multispectral autofluorescence lifetime imaging at a macroscopic scale using handheld single-point fibre optic probes, under bright background conditions. At the detection end, the fluorescence signal is passed through a transmission grating and both spectral and temporal information are encoded in the SPAD array. This configuration allows interrogation in the spectral range of interest in real time. Spatial information is provided by an external camera together with a guiding beam that provides a visual reference that is tracked in real-time. Through fast image processing and data analysis, fluorescence lifetime maps are augmented on white light images to provide feedback of the measurements in real-time. We validate and demonstrate the practicality of this technique in the reference fluorophores and in articular cartilage samples mimicking the degradation that occurs in osteoarthritis. Our results demonstrate that SPADs together with fibre probes can offer means to report autofluorescence spectral and lifetime contrast in real-time and thus are suitable candidates for in situ tissue diagnostics.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Fluorescence lifetime imaging with time-gated detection of hyaluronidase using a long lifetime azadioxatriangulenium (ADOTA) fluorophore [J].
Chib, Rahul ;
Requena, Sebastian ;
Mummert, Mark ;
Strzhemechny, Yuri M. ;
Gryczynski, Ignacy ;
Borejdo, Julian ;
Gryczynski, Zygmunt ;
Fudala, Rafal .
METHODS AND APPLICATIONS IN FLUORESCENCE, 2016, 4 (04) :047001
[32]   Rapid multispectral endoscopic imaging system for near real-time mapping of the mucosa blood supply in the lung [J].
Fawzy, Yasser ;
Lam, Stephen ;
Zeng, Haishan .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (08) :2980-2990
[33]   Real-Time Volume Imaging Using a Crossed Electrode Array [J].
Demore, Christine E. M. ;
Joyce, Andrew W. ;
Wall, Kieran ;
Lockwood, Geoffrey R. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2009, 56 (06) :1252-1261
[34]   Analysis of skin morphological features and real-time monitoring using snapshot hyperspectral imaging [J].
He, Qinghua ;
Wang, Ruikang K. .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (11) :5625-5638
[35]   Real-time molecular imaging of near-surface tissue using Raman spectroscopy [J].
Yang, Wei ;
Knorr, Florian ;
Latka, Ines ;
Vogt, Matthias ;
Hofmann, Gunther O. ;
Popp, Juergen ;
Schie, Iwan W. .
LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
[36]   Real-time imaging of renal clearance using Multi-Spectral Optoacoustic Tomography [J].
Morscher, Stefan ;
Burton, Neal C. ;
Taruttis, Adrian ;
Deliolanis, Nikolaos C. ;
Razansky, Daniel ;
Ntziachristos, Vasilis .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2012, 2012, 8223
[37]   An Active Timing Controlled-gate Fluorescence Lifetime Imaging Microscopy Using an Ultrafast Picosecond Diode Laser [J].
Liu, Yang ;
Zhou, Yan ;
Liu, Yuliang .
OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VI, 2014, 9268
[38]   InGaAs/InP avalanche photodiode for infrared single photon detection using a time-to-voltage converter [J].
Bouzid, Abdessattar ;
Nahhas, Ahmed M. ;
Guedri, Kamel .
OPTICS COMMUNICATIONS, 2014, 328 :37-40
[39]   Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging [J].
Wong, C. L. ;
Ho, H. P. ;
Suen, Y. K. ;
Kong, S. K. ;
Chen, Q. L. ;
Yuan, W. ;
Wu, S. Y. .
BIOSENSORS & BIOELECTRONICS, 2008, 24 (04) :606-612
[40]   Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays [J].
Montilla, Leonardo G. ;
Olafsson, Ragnar ;
Bauer, Daniel R. ;
Witte, Russell S. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (01) :N1-N12