CONVERTING FRACTIONAL DIFFERENTIAL EQUATIONS INTO PARTIAL DIFFERENTIAL EQUATIONS

被引:121
作者
He, Ji-Huan [1 ]
Li, Zheng-Biao [2 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou, Peoples R China
[2] Qujing Normal Univ, Coll Math & Informat Sci, Qujing, Yunnan, Peoples R China
来源
THERMAL SCIENCE | 2012年 / 16卷 / 02期
基金
中国国家自然科学基金;
关键词
modified Riemann-Liouville derivative; time-fractional heat conduction equation; fractional KdV equation; COMPLEX TRANSFORM;
D O I
10.2298/TSCI110503068H
中图分类号
O414.1 [热力学];
学科分类号
摘要
A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.
引用
收藏
页码:331 / 334
页数:4
相关论文
共 7 条
[1]   A NEW FRACTAL DERIVATION [J].
He, Ji-Huan .
THERMAL SCIENCE, 2011, 15 :S145-S147
[2]   ANALYTICAL METHODS FOR THERMAL SCIENCE - AN ELEMENTARY INTRODUCTION [J].
He, Ji-Huan .
THERMAL SCIENCE, 2011, 15 :S1-S3
[3]   Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results [J].
Jumarie, G. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) :1367-1376
[4]   Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order [J].
Jumarie, Guy .
APPLIED MATHEMATICS LETTERS, 2010, 23 (12) :1444-1450
[6]  
Li ZB, 2010, INT J NONLIN SCI NUM, V11, P335
[7]   FRACTIONAL COMPLEX TRANSFORM FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Li, Zheng-Biao ;
He, Ji-Huan .
MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2010, 15 (05) :970-973