Non-invasive and label-free 3D-visualization shows in vivo oligomerization of the staphylococcal alkaline shock protein 23 (Asp23)

被引:5
|
作者
Petersen, Inga [1 ,4 ]
Schlueter, Rabea [2 ]
Hoff, Katharina J. [3 ,4 ]
Liebscher, Volkmar [3 ]
Bange, Gert [5 ,6 ]
Riedel, Katharina [1 ,4 ]
Pane-Farre, Jan [1 ,4 ,5 ,6 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Microbiol, Felix Hausdorff Str 8, D-17489 Greifswald, Germany
[2] Ernst Moritz Arndt Univ Greifswald, Imaging Ctr, Dept Biol, Friedrich Ludwig Jahn Str 15, D-17489 Greifswald, Germany
[3] Ernst Moritz Arndt Univ Greifswald, Inst Math & Comp Sci, Walther Rathenau Str 47, D-17489 Greifswald, Germany
[4] Ctr Funct Genom Microbes, Felix Hausdorff Str 8, D-17489 Greifswald, Germany
[5] Philipps Univ Marburg, SYNMIKRO Res Ctr, Hans Meerwein Str 6,C07, D-35043 Marburg, Germany
[6] Dept Chem, Hans Meerwein Str 6,C07, D-35043 Marburg, Germany
关键词
ESCHERICHIA-COLI; STRESS; MICROSCOPY;
D O I
10.1038/s41598-019-56907-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fluorescence-tags, commonly used to visualize the spatial distribution of proteins within cells, can influence the localization of the tagged proteins by affecting their stability, interaction with other proteins or the induction of oligomerization artifacts. To circumvent these obstacles, a protocol was developed to generate 50 nm thick serial sections suitable for immunogold labeling and subsequent reconstruction of the spatial distribution of immuno-labeled native proteins within individual bacterial cells. Applying this method, we show a cellular distribution of the staphylococcal alkaline shock protein 23 (Asp23), which is compatible with filament formation, a property of Asp23 that we also demonstrate in vitro.
引用
收藏
页数:7
相关论文
共 7 条
  • [1] Non-invasive and label-free 3D-visualization shows in vivo oligomerization of the staphylococcal alkaline shock protein 23 (Asp23)
    Inga Petersen
    Rabea Schlüter
    Katharina J. Hoff
    Volkmar Liebscher
    Gert Bange
    Katharina Riedel
    Jan Pané-Farré
    Scientific Reports, 10
  • [2] New non-invasive, label-free monitoring approach for 2D and 3D
    Joetten, A.
    Paulitschke, P.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 : S21 - S22
  • [3] Holotomography (HT) techniques for non-invasive label-free 3D imaging of live cells and tissues
    Park, Y.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S295 - S295
  • [4] Non-invasive label-free imaging analysis pipeline for in situ characterization of 3D brain organoids
    Filan, Caroline
    Charles, Seleipiri
    Casteleiro Costa, Paloma
    Niu, Weibo
    Cheng, Brian
    Wen, Zhexing
    Lu, Hang
    Robles, Francisco E.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Polyelectrolyte Multilayer Coating of 3D Scaffolds Enhances Tissue Growth and Gene Delivery: Non-Invasive and Label-Free Assessment
    Holmes, Christina
    Daoud, Jamal
    Bagnaninchi, Pierre O.
    Tabrizian, Maryam
    ADVANCED HEALTHCARE MATERIALS, 2014, 3 (04) : 572 - 580
  • [6] Non-invasive monitoring of cell metabolism and lipid production in 3D engineered human adipose tissues using label-free multiphoton microscopy
    Chang, Tyler
    Zimmerley, Maxwell S.
    Quinn, Kyle P.
    Lamarre-Jouenne, Isabelle
    Kaplan, David L.
    Beaurepaire, Emmanuel
    Georgakoudi, Irene
    BIOMATERIALS, 2013, 34 (34) : 8607 - 8616
  • [7] Development of an AI-derived, non-invasive, label-free 3D-printed microfluidic SERS biosensor platform utilizing Cu@Ag/carbon nanofibers for the detection of salivary biomarkers in mass screening of oral cancer
    Sunil, Navami
    Unnathpadi, Rajesh
    Seenivasagam, Rajkumar Kottayasamy
    Abhijith, T.
    Latha, R.
    Sheen, Shina
    Pullithadathil, Biji
    JOURNAL OF MATERIALS CHEMISTRY B, 2025, 13 (10) : 3405 - 3419