ON THE REGULARITY OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS

被引:6
作者
Pata, Vittorino [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
Navier-Stokes equations; weak solutions; strong solutions; blow-up; regularity criteria; WEAK SOLUTIONS; INTERIOR REGULARITY; CRITERIA;
D O I
10.3934/cpaa.2012.11.747
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the incompressible Navier-Stokes equations in a three-dimensional domain. A criterion of Prodi-Serrin type up to the boundary for global existence of strong solutions is established.
引用
收藏
页码:747 / 761
页数:15
相关论文
共 50 条
[41]   A regularity class for the Navier-Stokes equations in Lorentz spaces [J].
Sohr, Hermann .
JOURNAL OF EVOLUTION EQUATIONS, 2001, 1 (04) :441-467
[42]   A class of solutions of the Navier-Stokes equations with large data [J].
Kukavica, Igor ;
Rusin, Walter ;
Ziane, Mohammed .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) :1492-1514
[44]   Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient [J].
Skalak, Zdenek .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 118 :1-21
[45]   A Weak-L p Prodi-Serrin Type Regularity Criterion for the Navier-Stokes Equations [J].
Bosia, Stefano ;
Pata, Vittorino ;
Robinson, James C. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (04) :721-725
[46]   Remarks on regularity criteria for the 3d Navier-Stokes equations [J].
Liu, Qiao ;
Pan, Meiling .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03) :868-875
[47]   On endpoint regularity criterion of the 3D Navier-Stokes equations [J].
Li, Zhouyu ;
Zhou, Daoguo .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 18 (01) :71-80
[48]   Logarithmically improved regularity criteria for the Navier-Stokes equations in Lorentz spaces [J].
Wei, Zhiqiang ;
Wang, Yu-Zhu ;
Wang, Yin-Xia .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) :9848-9852
[49]   Regularity criteria for the 3D Navier-Stokes and MHD equations [J].
Cheskidov, Alexey ;
Dai, Mimi .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025,
[50]   Estimates on fractional higher derivatives of weak solutions for the Navier-Stokes equations [J].
Choi, Kyudong ;
Vasseur, Alexis F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (05) :899-945