Fractional incidence coloring and star arboricity of graphs

被引:0
|
作者
Yang, Daqing [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
关键词
Incidence coloring; fractional coloring; direct and lexicographic products of graphs; star arboricity; planar graphs; MAXIMUM DEGREE-7; PLANAR GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper generalizes the results of Guiduli [B. Guiduli, On incidence coloring and star arboricity of graphs. Discrete Math. 163 (1997), 275-278] on the incidence coloring of graphs to the fractional incidence coloring. Tight asymptotic bounds analogous to Guiduli's results are given for the fractional incidence chromatic number of graphs. The fractional incidence chromatic number of circulant graphs is studied. Relationships between the k-tuple incidence chromatic number and the incidence chromatic number of the direct products and lexicographic products of graphs are established. Finally, for planar graphs G, it is shown that if Delta(G) not equal 6, then chi(i)(G) <= Delta(G) + 5; if Delta(G) = 6, then chi(i)(G) <= Delta(G) + 6; where chi(i)(G) denotes the incidence chromatic number of G. This improves the bound chi(i)(G) <= Delta(G) + 7 for planar graphs given in [M. Hosseini Dolama, E. Sopena, X. Zhu, Incidence coloring of k-degenerated graphs. Discrete Math. 283 (2004), no. 1-3, 121-128].
引用
收藏
页码:213 / 224
页数:12
相关论文
共 50 条
  • [1] Circular coloring and fractional coloring in planar graphs
    Hu, Xiaolan
    Li, Jiaao
    JOURNAL OF GRAPH THEORY, 2022, 99 (02) : 312 - 343
  • [2] Star coloring of cubic graphs
    Xie, Dezheng
    Xiao, Huanhuan
    Zhao, Zhihong
    INFORMATION PROCESSING LETTERS, 2014, 114 (12) : 689 - 691
  • [3] On k-Star Arboricity of Graphs
    陶昉昀
    林文松
    Journal of Donghua University(English Edition), 2014, 31 (03) : 335 - 338
  • [4] Defective incidence coloring of graphs
    Bi, Huimin
    Zhang, Xin
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 443
  • [5] Star Coloring Bipartite Planar Graphs
    Kierstead, H. A.
    Kuendgen, Andre
    Timmons, Craig
    JOURNAL OF GRAPH THEORY, 2009, 60 (01) : 1 - 10
  • [6] INTERVAL INCIDENCE COLORING OF SUBCUBIC GRAPHS
    Malafiejska, Anna
    malafiejski, Michal
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 427 - 441
  • [7] Incidence coloring of Cartesian product graphs
    Shiau, Alexander Chane
    Shiau, Tzong-Huei
    Wang, Yue-Li
    INFORMATION PROCESSING LETTERS, 2015, 115 (10) : 765 - 768
  • [8] Star Coloring of Graphs with Girth at Least Five
    Shalu, M. A.
    Sandhya, T. P.
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2121 - 2134
  • [9] ON INCIDENCE COLORING OF GRAPH FRACTIONAL POWERS
    Mozafari-Nia, Mahsa
    Iradmusa, Moharram N.
    OPUSCULA MATHEMATICA, 2023, 43 (01) : 109 - 123
  • [10] FRACTIONAL COLORING METHODS WITH APPLICATIONS TO DEGENERATE GRAPHS AND GRAPHS ON SURFACES
    Gimbel, John
    Kundgen, Andre
    Li, Binlong
    Thomassen, Carsten
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) : 1415 - 1430