Enhancement of Activity and Sulfur Resistance of CeO2 Supported on TiO2-SiO2 for the Selective Catalytic Reduction of NO by NH3

被引:293
作者
Liu, Caixia [1 ]
Chen, Liang [1 ,2 ]
Li, Junhua [1 ]
Ma, Lei [1 ]
Arandiyan, Hamidreza [1 ]
Du, Yu [1 ]
Xu, Jiayu [1 ]
Hao, Jiming [1 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[2] CPI YUANDA Environm Protect Engn Co Ltd, Chongqing 401122, Peoples R China
关键词
LOW-TEMPERATURE SCR; NITRIC-OXIDE; SURFACE-PROPERTIES; MIXED OXIDES; IRON-OXIDE; AMMONIA; ADSORPTION; SILICA; OXIDATION; NITROGEN;
D O I
10.1021/es3001773
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A series of novel metal-oxide-supported CeO2 catalysts were prepared via the wet impregnation method, and their NH3-SCR activities were investigated. The Ce/TiO2-SiO2 catalyst with a Ti/Si mass ratio of 3/1 exhibited superior NH3-SCR activity and high N-2 selectivity in the temperature range of 250-450 degrees C. The characterization results revealed that the activity enhancement was correlated with the properties of the support material. Cerium was highly dispersed on the TiO2-SiO2 binary metal oxide support, and the interaction of Ti and Si resulted in greater conversion of Ce4+ to Ce3+ on the surface of the catalyst compared to that on the single metal oxide supports. As a result of in the increased number of acid sites on Ce/TiO2-SiO2 that resulted from the addition of SiO2, the NH3 adsorption capacity was significantly improved. All of these factors played significant roles in the high SCR activity. More importantly, Ce/TiO2-SiO2 exhibited strong resistance to SO2 and H2O poisoning. After the addition of SiO2, the number of Lewis-acid sites was not decreased, but the number of Bronsted-acid sites on the TiO2-SiO2 carrier was increased. The introduction of SiO2 further weakened the alkalinity over the surface of the Ce/TiO2-SiO2 catalyst, which resulted in sulfate not easily accumulating on the surface of the Ce/TiO2-SiO2 catalyst in comparison with Ce/TiO2.
引用
收藏
页码:6182 / 6189
页数:8
相关论文
共 51 条
[1]   Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts [J].
Apostolescu, N ;
Geiger, B ;
Hizbullah, K ;
Jan, MT ;
Kureti, S ;
Reichert, D ;
Schott, F ;
Weisweiler, W .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 62 (1-2) :104-114
[2]   Photocatalytic activity of titania modified mesoporous silica for pollution control [J].
Belhekar, AA ;
Awate, SV ;
Anand, R .
CATALYSIS COMMUNICATIONS, 2002, 3 (10) :453-458
[3]   Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:: A review [J].
Busca, G ;
Lietti, L ;
Ramis, G ;
Berti, F .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1998, 18 (1-2) :1-36
[4]   ADSORPTION AND REACTIVITY OF NO ON COPPER-ON-ALUMINA CATALYSTS .1. FORMATION OF NITRATE SPECIES AND THEIR INFLUENCE ON REACTIVITY IN NO AND NH3 CONVERSION [J].
CENTI, G ;
PERATHONER, S ;
BIGLINO, D ;
GIAMELLO, E .
JOURNAL OF CATALYSIS, 1995, 152 (01) :75-92
[5]   NATURE OF ACTIVE SPECIES IN COPPER-BASED CATALYSTS AND THEIR CHEMISTRY OF TRANSFORMATION OF NITROGEN-OXIDES [J].
CENTI, G ;
PERATHONER, S .
APPLIED CATALYSIS A-GENERAL, 1995, 132 (02) :179-259
[6]   The effect of zirconia polymorphs on the structure and catalytic properties of V2O5/ZrO2 catalysts [J].
Chary, Komandur V. R. ;
Ramesh, Kanaparthi ;
Naresh, Dhachapally ;
Rao, Pendyala Venkat Ramana ;
Rao, A. Ramachandra ;
Rao, Vattikonda Venkat .
CATALYSIS TODAY, 2009, 141 (1-2) :187-194
[7]   CeO2-WO3 Mixed Oxides for the Selective Catalytic Reduction of NOx by NH3 Over a Wide Temperature Range [J].
Chen, Liang ;
Li, Junhua ;
Ablikim, Wijdan ;
Wang, Jun ;
Chang, Huazhen ;
Ma, Lei ;
Xu, Jiayu ;
Ge, Maofa ;
Arandiyan, Hamidreza .
CATALYSIS LETTERS, 2011, 141 (12) :1859-1864
[8]   Mechanism of Selective Catalytic Reduction of NOx with NH3 over CeO2-WO3 Catalysts [J].
Chen Liang ;
Li Junhua ;
Ge Maofa ;
Ma Lei ;
Chang Huazhen .
CHINESE JOURNAL OF CATALYSIS, 2011, 32 (05) :836-841
[9]   DRIFT Study on Cerium-Tungsten/Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3 [J].
Chen, Liang ;
Li, Junhua ;
Ge, Maofa .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (24) :9590-9596
[10]   Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia [J].
Chen, Liang ;
Li, Junhua ;
Ge, Maofa ;
Zhu, Ronghai .
CATALYSIS TODAY, 2010, 153 (3-4) :77-83