An infinity norm bound for the inverse of Dashnic-Zusmanovich type matrices with applications

被引:29
作者
Li, Chaoqian [1 ]
Cvetkovic, Ljiljana [2 ]
Wei, Yimin [3 ,4 ]
Zhao, Jianxing [5 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
[2] Univ Novi Sad, Dept Math & Informat, Fac Sci, Trg D Obradov 4, Novi Sad 21000, Serbia
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[4] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[5] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Infinity norm; Dashnic-Zusmanovich type matrices; Linear complementarity problems; DZ-type-B-matrices; H-matrices; Pseudospectra localization; LINEAR COMPLEMENTARITY-PROBLEMS; EVENTUALLY SDD MATRICES; ERROR-BOUNDS; PERTURBATION BOUNDS; LOCALIZATIONS; SUBCLASS;
D O I
10.1016/j.laa.2018.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An upper bound for the infinity norm for the inverse of Dashnic-Zusmanovich type matrices is given. It is proved that the upper bound is sharper than the well-known Varah's bound for strictly diagonally dominant matrices. By introducing a new subclass of P-matrices: Dashnic- Zusmanovich type B-matrices (DZ-type-B-matrices), and using the proposed infinity norm bound, an error bound is given for the linear complementarity problems of DZ-type-B-matrices. We also give a new pseudospectra localization to measure the distance to instability. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 122
页数:24
相关论文
共 61 条
[1]  
[Anonymous], 1931, B LACADEMIE SCI LURS
[2]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[3]   Error bounds for linear complementarity problems of MB-matrices [J].
Chen, Tingting ;
Li, Wen ;
Wu, Xianping ;
Vong, Seakweng .
NUMERICAL ALGORITHMS, 2015, 70 (02) :341-356
[4]   PERTURBATION BOUNDS OF P-MATRIX LINEAR COMPLEMENTARITY PROBLEMS [J].
Chen, Xiaojun ;
Xiang, Shuhuang .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1250-1265
[5]   Computation of error bounds for P-matrix linear complementarity problems [J].
Chen, XJ ;
Xiang, SH .
MATHEMATICAL PROGRAMMING, 2006, 106 (03) :513-525
[6]  
Cottle RW, 1992, The linear complementarity problem
[7]   Eventually SDD matrices and eigenvalue localization [J].
Cvetkovic, Lj. ;
Eric, M. ;
Pena, J. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 :535-540
[8]   Application of generalized diagonal dominance in wireless sensor network optimization problems [J].
Cvetkovic, Lj ;
Kostic, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) :4798-4805
[9]   H-matrix theory vs. eigenvalue localization [J].
Cvetkovic, Ljiljana .
NUMERICAL ALGORITHMS, 2006, 42 (3-4) :229-245
[10]   Max norm estimation for the inverse of block matrices [J].
Cvetkovic, Ljiljana ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :694-706