An electrochemical biosensor exploiting binding-induced changes in electron transfer of electrode-attached DNA origami to detect hundred nanometer-scale targets

被引:15
作者
Arroyo-Curras, Netzahualcoyotl [1 ]
Sadeia, Muaz [2 ]
Ng, Alexander K. [2 ]
Fyodorova, Yekaterina [2 ]
Williams, Natalie [2 ]
Afif, Tammy [2 ]
Huang, Chao-Min [3 ]
Ogden, Nathan [4 ,5 ]
Andresen Eguiluz, Roberto C. [4 ,5 ]
Su, Hai-Jun [3 ]
Castro, Carlos E. [3 ]
Plaxco, Kevin W. [4 ,5 ]
Lukeman, Philip S. [2 ]
机构
[1] Johns Hopkins Univ, Dept Pharmacol & Mol Sci, Sch Med, Baltimore, MD 21205 USA
[2] St Johns Univ, Dept Chem, Queens, NY 11439 USA
[3] Ohio State Univ, Dept Mech & Aerosp Engn, Biophys Grad Program, Columbus, OH USA
[4] Univ Calif Santa Barbara, Ctr Bioengn, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
NANOSTRUCTURES; MOLECULES; TRANSPORT; SHAPES;
D O I
10.1039/d0nr00952k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The specific detection in clinical samples of analytes with dimensions in the tens to hundreds of nanometers, such as viruses and large proteins, would improve disease diagnosis. Detection of these "mesoscale" analytes (as opposed to their nanoscale components), however, is challenging as it requires the simultaneous binding of multiple recognition sites often spaced over tens of nanometers. In response, we have adapted DNA origami, with its unparalleled customizability to precisely display multiple target-binding sites over the relevant length scale, to an electrochemical biosensor platform. Our proof-of-concept employs triangular origami covalently attached to a gold electrode and functionalized with redox reporters. Electrochemical interrogation of this platform successfully monitors mesoscale, target-binding-induced changes in electron transfer in a manner consistent with coarse-grained molecular dynamics simulations. Our approach enables the specific detection of analytes displaying recognition sites that are separated by similar to 40 nm, a spacing significantly greater than that achieved in similar sensor architectures employing either antibodies or aptamers.
引用
收藏
页码:13907 / 13911
页数:5
相关论文
共 37 条
[1]   Electrochemical Switching with 3D DNA Tetrahedral Nanostructures Self-Assembled at Gold Electrodes [J].
Abi, Alireza ;
Lin, Meihua ;
Pei, Hao ;
Fan, Chunhai ;
Ferapontova, Elena E. ;
Zuo, Xiaolei .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (11) :8928-8931
[2]   High-Precision Control of Plasma Drug Levels Using Feedback-Controlled Dosing [J].
Arroyo-Curras, Netzahualcoyotl ;
Ortega, Gabriel ;
Copp, David A. ;
Ploense, Kyle L. ;
Plaxco, Zoe A. ;
Kippin, Tod E. ;
Hespanha, Joao P. ;
Plaxco, Kevin W. .
ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2018, 1 (02) :110-118
[3]   Real-time measurement of small molecules directly in awake, ambulatory animals [J].
Arroyo-Curras, Netzahualcoyotl ;
Somerson, Jacob ;
Vieira, Philip A. ;
Ploense, Kyle L. ;
Kippin, Tod E. ;
Plaxco, Kevin W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (04) :645-650
[4]   Four-Point Probe Electrical Measurements on Templated Gold Nanowires Formed on Single DNA Origami Tiles [J].
Aryal, Basu R. ;
Westover, Tyler R. ;
Ranasinghe, Dulashani R. ;
Calvopina, Diana G. ;
Uprety, Bibek ;
Harb, John N. ;
Davis, Robert C. ;
Woolley, Adam T. .
LANGMUIR, 2018, 34 (49) :15069-15077
[5]  
Burns JR, 2016, NAT NANOTECHNOL, V11, P152, DOI [10.1038/NNANO.2015.279, 10.1038/nnano.2015.279]
[6]   One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures [J].
Cassinelli, Valentina ;
Oberleitner, Birgit ;
Sobotta, Jessica ;
Nickels, Philipp ;
Grossi, Guido ;
Kempter, Susanne ;
Frischmuth, Thomas ;
Liedl, Tim ;
Manetto, Antonio .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (27) :7795-7798
[7]  
Feldman Ben, 2003, Diabetes Technol Ther, V5, P769, DOI 10.1089/152091503322526978
[8]  
Funke JJ, 2016, NAT NANOTECHNOL, V11, P47, DOI [10.1038/NNANO.2015.240, 10.1038/nnano.2015.240]
[9]   Constructing Submonolayer DNA Origami Scaffold on Gold Electrode for Wiring of Redox Enzymatic Cascade Pathways [J].
Ge, Zhilei ;
Fu, Jinglin ;
Liu, Minghui ;
Jiang, Shuoxing ;
Andreoni, Alessio ;
Zuo, Xiaolei ;
Liu, Yan ;
Yan, Hao ;
Fan, Chunhai .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (15) :13881-13887
[10]   Sequence-programmable covalent bonding of designed DNA assemblies [J].
Gerling, Thomas ;
Kube, Massimo ;
Kick, Benjamin ;
Dietz, Hendrik .
SCIENCE ADVANCES, 2018, 4 (08)