Force Field Model of Periodic Trends in Biomolecular Halogen Bonds

被引:38
作者
Scholfield, Matthew R. [1 ]
Ford, Melissa Coates [1 ]
Zanden, Crystal M. Vander [1 ]
Billman, M. Marie [2 ]
Ho, P. Shing [1 ]
Rappe, Anthony K. [2 ]
机构
[1] Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
ENRICHED FRAGMENT LIBRARIES; MOLECULAR-INTERACTIONS; DNA; BINDING; DEFINITION; ENERGIES; CHLORINE; BROMINE; DESIGN; SHAPES;
D O I
10.1021/jp509003r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry-its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as an accurate computational tool that can be applied, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular-based materials.
引用
收藏
页码:9140 / 9149
页数:10
相关论文
共 56 条
[1]   Combining halogen bonds and hydrogen bonds in the modular assembly of heteromeric infinite 1-D chains [J].
Aakeroey, Christer B. ;
Desper, John ;
Helfrich, Brian A. ;
Metrangolo, Pierangelo ;
Pilati, Tullio ;
Resnati, Giuseppe ;
Stevenazzi, Andrea .
CHEMICAL COMMUNICATIONS, 2007, (41) :4236-4238
[2]  
[Anonymous], 2012, MATH VERS 9 0
[3]  
[Anonymous], 2009, 238 ACS NATL M VOL O
[4]   Definition of the hydrogen bond (IUPAC Recommendations 2011) [J].
Arunan, Elangannan ;
Desiraju, Gautam R. ;
Klein, Roger A. ;
Sadlej, Joanna ;
Scheiner, Steve ;
Alkorta, Ibon ;
Clary, David C. ;
Crabtree, Robert H. ;
Dannenberg, Joseph J. ;
Hobza, Pavel ;
Kjaergaard, Henrik G. ;
Legon, Anthony C. ;
Mennucci, Benedetta ;
Nesbitt, David J. .
PURE AND APPLIED CHEMISTRY, 2011, 83 (08) :1637-1641
[5]   Halogen bonds in biological molecules [J].
Auffinger, P ;
Hays, FA ;
Westhof, E ;
Ho, PS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (48) :16789-16794
[6]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[7]   Enthalpy-Entropy Compensation in Biomolecular Halogen Bonds Measured in DNA Junctions [J].
Carter, Megan ;
Voth, Andrea Regier ;
Scholfield, Matthew R. ;
Rummel, Brittany ;
Sowers, Lawrence C. ;
Ho, P. Shing .
BIOCHEMISTRY, 2013, 52 (29) :4891-4903
[8]   Scalable Anisotroplic Shape and Electrostatic Models for Biological Bromine Halogen Bonds [J].
Carter, Megan ;
Rappe, Anthony K. ;
Ho, P. Shing .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (07) :2461-2473
[9]   Assaying the Energies of Biological Halogen Bonds [J].
Carter, Megan ;
Ho, P. Shing .
CRYSTAL GROWTH & DESIGN, 2011, 11 (11) :5087-5095
[10]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688