Triple I method based on pointwise sustaining degrees

被引:17
作者
Liu, Hua-Wen [1 ]
Wang, Guo-Jun [2 ,3 ]
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Shandong, Peoples R China
[2] Shaanxi Normal Univ, Inst Math, Xian 710062, Shaanxi, Peoples R China
[3] Xian Jiaotong Univ, Ctr Sci Res, Xian 710049, Shaanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
fuzzy reasoning; triple I method; triple I principle; pointwise sustaining degree; implication operator;
D O I
10.1016/j.camwa.2007.10.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of the pointwise sustaining degrees is first introduced, and based on it the triple I principles for fuzzy modus ponens (FMP for short) and fuzzy modus tollens (FMT for short) are improved. And then, for the sake of making more implications can be used under the same way, general computing formulas of the triple I method for FMP and FMT are established under weaker conditions. Thus, the existing unified forms of triple I method are generalized to new forms. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2680 / 2688
页数:9
相关论文
共 11 条
[1]   CONTRAPOSITIVE SYMMETRY OF FUZZY IMPLICATIONS [J].
FODOR, JC .
FUZZY SETS AND SYSTEMS, 1995, 69 (02) :141-156
[2]  
HOEHLE U, 1995, HDB MATH FDN FUZZY S, P53
[3]   Continuity of left-continuous triangular norms with strong induced negations and their boundary condition [J].
Jenei, S .
FUZZY SETS AND SYSTEMS, 2001, 124 (01) :35-41
[4]   A note on the unified forms of triple I method [J].
Liu, Hua-Wen ;
Wang, Guo-Jun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (10-11) :1609-1613
[5]   FUZZY LOGIC .2. ENRICHED RESIDUATED LATTICES AND SEMANTICS OF PROPOSITIONAL CALCULI [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (02) :119-134
[6]   Triple I method of fuzzy reasoning [J].
Song, SJ ;
Feng, CB ;
Lee, ES .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (12) :1567-1579
[7]  
Wang G.J., 2003, NONCLASSICAL MATH LO
[8]  
Wang G.J., 1999, Sci. China (Ser. E), V29, P43
[9]   Unified forms of Triple I method [J].
Wang, GJ ;
Fu, L .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (5-6) :923-932
[10]  
WANG GJ, 2003, INTRO MATH LOGIC RES