Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography

被引:5
作者
Bie, Yifan [1 ]
Yang, Shuo [1 ]
Li, Xingchao [1 ]
Zhao, Kun [1 ]
Zhang, Changlei [1 ]
Zhong, Hai [1 ]
机构
[1] Shandong Univ, Hosp 2, Cheeloo Coll Med, Dept Radiol, Jinan, Shandong, Peoples R China
关键词
Deep learning image reconstruction; computed tomography (CT); adaptive statistical iterative reconstruction-Veo; image quality; renal CT; adrenal CT; ABDOMINAL CT; ALGORITHM;
D O I
10.3233/XST-211105
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
OBJECTIVE: To evaluate image quality of deep learning-based image reconstruction (DLIR) in contrast-enhanced renal and adrenal computed tomography (CT) compared with adaptive statistical iterative reconstruction-Veo (ASiR-V). METHODS: We prospectively recruited 52 patients. All images were reconstructed with ASiR-V 30%, ASiR-V 70%, and DLIR at low, medium, and high reconstruction strengths. CT number, noise, noise reduction rate, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured and calculated within the region of interest (ROI) on subcutaneous fat, bilateral renal cortices, renal medulla, renal arteries, and adrenal glands. For qualitative analyses, the differentiation of the renal cortex and medulla, conspicuity of the adrenal gland boundary, sharpness, artifacts, and subjective noise were assessed. The overall image quality was calculated on a scale from 0 (worst) to 15 (best) based on the five values above and the score >= 9 was acceptable. RESULTS: CT number does not significantly differ between the reconstruction datasets. Noise does not significantly differ between ASiR-V 30% and DLIR-L, but it is significantly lower using ASiR-V 70%, DLIR-M, and DLIR-H. The noise reduction rate relative to ASiR-V 30% is significantly different between the DLIR groups and ASiR-V 70%, and DLIR-H yields the highest noise reduction rate (61.6%). SNR and CNR are higher for DLIR-M, DLIR-H, and ASiR-V 70% than for ASiR-V 30% and DLIR-L. DLIR-H shows the best SNR and CNR. The overall image quality yields the same pattern for DLIR-H, with the highest score. Percentages of cases with overall image quality score >= 9 are 100% (DLIR-H), 94.23% (DLIR-M), 90.38% (ASiR-V70%), 67.31% (DLIR-L), and 63.46% (ASiR-V30%), respectively. CONCLUSIONS: DLIR significantly improved the objective and subjective image quality of renal and adrenal CTs, yielding superior noise reduction compared with ASiR-V.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 26 条
[1]   Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy [J].
Benz, Dominik C. ;
Benetos, Georgios ;
Rampidis, Georgios ;
von Felten, Elia ;
Bakula, Adam ;
Sustar, Aleksandra ;
Kudura, Ken ;
Messerli, Michael ;
Fuchs, Tobias A. ;
Gebhard, Catherine ;
Pazhenkottil, Aju P. ;
Kaufmann, Philipp A. ;
Buechel, Ronny R. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2020, 14 (05) :444-451
[2]   Multi-detector row CT attenuation measurements: Assessment of intra- and interscanner variability with an anthropomorphic body CT phantom [J].
Birnbaum, Bernard A. ;
Hindman, Nicole ;
Lee, Julie ;
Babb, James S. .
RADIOLOGY, 2007, 242 (01) :109-119
[3]   Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction [J].
Brady, Samuel L. ;
Trout, Andrew T. ;
Somasundaram, Elanchezhian ;
Anton, Christopher G. ;
Li, Yinan ;
Dillman, Jonathan R. .
RADIOLOGY, 2021, 298 (01) :180-188
[4]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[5]   Deep Learning: A Primer for Radiologists [J].
Chartrand, Gabriel ;
Cheng, Phillip M. ;
Vorontsov, Eugene ;
Drozdzal, Michal ;
Turcotte, Simon ;
Pal, Christopher J. ;
Kadoury, Samuel ;
Tang, An .
RADIOGRAPHICS, 2017, 37 (07) :2113-2131
[6]   Image quality comparison of two adaptive statistical iterative reconstruction (ASiR, ASiR-V) algorithms and filtered back projection in routine liver CT [J].
Chen, Li-Hong ;
Jin, Chao ;
Li, Jian-Ying ;
Wang, Ge-Liang ;
Jia, Yong-Jun ;
Duan, Hai-Feng ;
Pan, Ning ;
Guo, Jianxin .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1088)
[7]   Computed tomography-old ideas and new technology [J].
Fleischmann, Dominik ;
Boas, F. Edward .
EUROPEAN RADIOLOGY, 2011, 21 (03) :510-517
[8]   State of the Art: Iterative CT Reconstruction Techniques [J].
Geyer, Lucas L. ;
Schoepf, U. Joseph ;
Meinel, Felix G. ;
Nance, John W., Jr. ;
Bastarrika, Gorka ;
Leipsic, Jonathon A. ;
Paul, Narinder S. ;
Rengo, Marco ;
Laghi, Andrea ;
De Cecco, Carlo N. .
RADIOLOGY, 2015, 276 (02) :338-356
[9]   Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study [J].
Greffier, Joel ;
Hamard, Aymeric ;
Pereira, Fabricio ;
Barrau, Corinne ;
Pasquier, Hugo ;
Beregi, Jean Paul ;
Frandon, Julien .
EUROPEAN RADIOLOGY, 2020, 30 (07) :3951-3959
[10]   What is the preferred strength setting of the sinogram-affirmed iterative reconstruction algorithm in abdominal CT imaging? [J].
Hardie A.D. ;
Nelson R.M. ;
Egbert R. ;
Rieter W.J. ;
Tipnis S.V. .
Radiological Physics and Technology, 2015, 8 (1) :60-63