Understanding the anti-icing property of nanostructured superhydrophobic aluminum surface during glaze ice accretion

被引:29
作者
Zuo, Zhiping [1 ,2 ]
Song, Xiaoyu [2 ,3 ]
Liao, Ruijin [2 ]
Zhao, Xuetong [2 ]
Yuan, Yuan [4 ]
机构
[1] Chongqing Univ, Sch Automat, Chongqing 400044, Peoples R China
[2] Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
[3] Univ Cincinnati, Coll Engn & Appl Sci, Dept Elect Engn & Comp Sci, Cincinnati, OH 45221 USA
[4] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
关键词
Superhydrophobic; Anti-icing; Glaze ice; Anti-frosting; ZnO texture; FLASHOVER PERFORMANCE; ALLOY SURFACES; DROPLET IMPACT; FABRICATION; DYNAMICS; FACILE;
D O I
10.1016/j.ijheatmasstransfer.2018.12.092
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ice accumulation on power transmission lines has been a vital problem for power systems in cold regions. In this paper, the anti-icing property of the as-prepared superhydrophobic (SHP) surface on the aluminum substrate in glaze ice was studied in an artificial climate chamber. Results show that the as prepared SHP surface demonstrates excellent anti-icing property with only 24.65% of the entire surface froze after spraying for 60 min. The nano-scale structures and the HDTMS molecule both contributed to the superhydrophobicity. The reason for the excellent anti-icing property of the as-prepared SHP surface can be ascribed to two reasons: on the one hand, the nanoscale structures can effectively help maintain the superhydrophobicity of the as-prepared SHP surface at low temperatures, which inhibited the frosting process for over 210 min at -5 degrees C and -10 degrees C. On the other hand, the as-prepared SHP surface can completely repel the impacting millimeter-level cooled water droplets or reducing the critical diameter of micro-scale droplets in glaze ice leading to a reduction of ice accumulation. The nanostructured ZnO textures significantly helped improve the ability to resist frost and ice accumulation on the aluminum surface, which has a good prospect on power transmission lines against ice formation. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 44 条
  • [1] Purity of the sacred lotus, or escape from contamination in biological surfaces
    Barthlott, W
    Neinhuis, C
    [J]. PLANTA, 1997, 202 (01) : 1 - 8
  • [2] Fabricating superhydrophobic aluminum: An optimized one-step wet synthesis using fluoroalkyl silane
    Bernagozzi, I.
    Antonini, C.
    Villa, F.
    Marengo, M.
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 441 : 919 - 924
  • [3] Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces
    Boreyko, Jonathan B.
    Srijanto, Bernadeta R.
    Trung Dac Nguyen
    Vega, Carlos
    Fuentes-Cabrera, Miguel
    Collier, C. Patrick
    [J]. LANGMUIR, 2013, 29 (30) : 9516 - 9524
  • [4] Chen X. B., 2013, SCI REP, V3
  • [5] Nonwetting of impinging droplets on textured surfaces
    Deng, Tao
    Varanasi, Kripa K.
    Hsu, Ming
    Bhate, Nitin
    Keimel, Chris
    Stein, Judith
    Blohm, Margaret
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (13)
  • [6] Sphere-on-cone microstructures on Teflon surface: Repulsive behavior against impacting water droplets
    Di Mundo, Rosa
    Bottiglione, Francesco
    Palumbo, Fabio
    Favia, Pietro
    Carbone, Giuseppe
    [J]. MATERIALS & DESIGN, 2016, 92 : 1052 - 1061
  • [7] Farzaneh M., 1992, INT J OFFSHORE POLAR, V2
  • [8] Super-hydrophobic surfaces: From natural to artificial
    Feng, L
    Li, SH
    Li, YS
    Li, HJ
    Zhang, LJ
    Zhai, J
    Song, YL
    Liu, BQ
    Jiang, L
    Zhu, DB
    [J]. ADVANCED MATERIALS, 2002, 14 (24) : 1857 - 1860
  • [9] STUDIES AT PHASE INTERFACES .1. SLIDING OF LIQUID DROPS ON SOLID SURFACES AND A THEORY FOR SPRAY RETENTION
    FURMIDGE, CG
    [J]. JOURNAL OF COLLOID SCIENCE, 1962, 17 (04): : 309 - &
  • [10] Icephobic/Anti-Icing Properties of Micro/Nanostructured Surfaces
    Guo, Peng
    Zheng, Yongmei
    Wen, Mengxi
    Song, Cheng
    Lin, Yucai
    Jiang, Lei
    [J]. ADVANCED MATERIALS, 2012, 24 (19) : 2642 - 2648