Distributed Primal-Dual Methods for Online Constrained Optimization

被引:0
作者
Lee, Soomin [1 ]
Zavlanos, Michael M. [1 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
来源
2016 AMERICAN CONTROL CONFERENCE (ACC) | 2016年
基金
美国国家科学基金会;
关键词
CONVEX-OPTIMIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a decentralized primal-dual method for online distributed optimization involving global constraints. We employ a consensus-based framework and exploit the decomposability of the constraints in dual domain. At each stage, each agent commits to an adaptive decision pertaining only to the past and locally available information, and incurs a new cost function reflecting the change in the environment. We show that the algorithm achieves a regret of order O (root T) at any node with the time horizon T, in scenarios when the underlying communication topology is time-varying and jointly-connected.
引用
收藏
页码:7171 / 7176
页数:6
相关论文
共 50 条