Microstructure evolution and compressive properties of a low carbon-low alloy steel processed by warm rolling and subsequent annealing

被引:9
|
作者
Gao, Chong [1 ]
Wang, Yingchun [1 ,2 ]
Qiu, Xuyangfan [1 ]
Chi, Hongxiao
Zhou, Jian [3 ]
Cai, Hongnian [1 ,2 ,3 ]
Cheng, Xingwang [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
[3] Cent iron & Steel Res Inst, Res Inst Special Steel, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Low carbon steel; Warm rolling; Annealing; Microstructure evolution; Compressive properties; Strengthening mechanism; MEDIUM-MN STEEL; MECHANICAL-PROPERTIES; STAINLESS-STEEL; PIPELINE STEEL; STRAIN-RATE; TEMPERATURE; SENSITIVITY; STRENGTH; DISSOLUTION; CEMENTITE;
D O I
10.1016/j.matchar.2022.112237
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A low carbon-low alloy steel was processed by warm rolling with reductions range from-30% to-70% followed by annealing at 450 & DEG;C. Then, the microstructural evolution was characterized by Field Emission Scanning Electron Microscopy (FE-SEM), Electron Backscatter Diffraction (EBSD), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and compressive testing under strain rates of 1.0 x 10(- 3)-2.0 x 10(3) s(-1) was carried out. Microscopy analyses showed that ultrafine-grained structures with high-density dislocations and more and finer M3C carbides by comparison with the tempered steel were achieved after warm rolling. Subse-quent annealing promoted the further precipitation of finer carbides and led to dislocation recovery as well as a slight coarsening of grains. Compressive testing results indicated that the yield strengths of the warm rolled steels at different strain rates were significantly increased by-40-70% compared with the as-received sample, which was mainly attributed to a combination of dislocation strengthening, grain boundary strengthening and pre-cipitation strengthening. After annealing, the yield strength decreased slightly due to a dislocation recovery and a slight increment of the grain sizes. In addition, the influence of microstructure evolutions including dislocation densities, grain sizes and carbide precipitations during warm rolling and subsequent annealing on the strain rate dependence of strength for steels was also analyzed.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Annealing Characteristics of Ultrafine Grained Low-Carbon Steel Processed by Differential Speed Rolling Method
    Hamad, Kotiba
    Ko, Young Gun
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (05): : 2319 - 2334
  • [32] Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel
    Jin-tao Shi
    Long-gang Hou
    Jin-rong Zuo
    Lin-zhong Zhuang
    Ji-shan Zhang
    International Journal of Minerals, Metallurgy, and Materials, 2017, 24 : 638 - 645
  • [33] Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel
    Jin-tao Shi
    Long-gang Hou
    Jin-rong Zuo
    Lin-zhong Zhuang
    Ji-shan Zhang
    InternationalJournalofMineralsMetallurgyandMaterials, 2017, 24 (06) : 638 - 645
  • [34] Evolution of Microstructure and Mechanical Properties in Al 5052 Alloy During Warm Rolling
    Kang, Ui Gu
    Jeong, Shin Woong
    Nam, Won Jong
    STEEL RESEARCH INTERNATIONAL, 2010, 81 (09) : 118 - 121
  • [35] Submicrocryctalline structure and properties of 05G2MFB low carbon steel processed by severe warm rolling
    Sergeev, S. N.
    Safarov, I. M.
    Korznikov, A. V.
    LETTERS ON MATERIALS-PIS MA O MATERIALAKH, 2012, 2 (02): : 74 - 77
  • [36] Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling
    Tadanobu Inoue
    Fuxing Yin
    Yuuji Kimura
    Kaneaki Tsuzaki
    Shojiro Ochiai
    Metallurgical and Materials Transactions A, 2010, 41 : 341 - 355
  • [37] An analysis of microstructure and mechanical properties of ferritic stainless steel 430 during cold rolling and subsequent annealing
    Sun, Xiaoyu
    Ma, Linan
    Li, Jinghui
    Zhang, Mingya
    Ma, Xiaoguang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 123 (3-4) : 1159 - 1173
  • [38] Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-Grained Low-Carbon Medium-Manganese Steel Produced by Heavy Warm Rolling
    Sohail Ahmad
    Li-Feng Lv
    Li-Ming Fu
    Huan-Rong Wang
    Wei Wang
    Ai-Dang Shan
    Acta Metallurgica Sinica (English Letters), 2019, 32 : 361 - 371
  • [39] Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-Grained Low-Carbon Medium-Manganese Steel Produced by Heavy Warm Rolling
    Sohail Ahmad
    Li-Feng Lv
    Li-Ming Fu
    Huan-Rong Wang
    Wei Wang
    Ai-Dang Shan
    Acta Metallurgica Sinica(English Letters), 2019, 32 (03) : 361 - 371
  • [40] Delamination Effect on Impact Properties of Ultrafine-Grained Low-Carbon Steel Processed by Warm Caliber Rolling
    Inoue, Tadanobu
    Yin, Fuxing
    Kimura, Yuuji
    Tsuzaki, Kaneaki
    Ochiai, Shojiro
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (02): : 341 - 355