Hopf bifurcation in a diffusive predator-prey model with competitive interference

被引:9
|
作者
Liu, Fuxiang [1 ]
Yang, Ruizhi [1 ]
Tang, Leiyu [2 ]
机构
[1] Northeast Forestry Univ, Dept Math, Harbin 150040, Heilongjiang, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
关键词
Predator-prey; Delay; Diffusion; Hopf bifurcation;
D O I
10.1016/j.chaos.2019.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we studied a diffusive predator-prey model with competitive interference and Crowley-Martin type functional response. The conditions for local stability of coexisting equilibrium are given by analyzing the eigenvalue spectrum. By using delay as bifurcation parameter, conditions for occurrence of Hopf bifurcation are also given. The property of bifurcating period solutions is investigated by calculating the normal form. Some numerical simulations are performed to support our theoretical result. Our conclusions show that diffusion and delay are two factors that should be considered in establishing the predator-prey model, since they can induce spatially bifurcating period solutions. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:250 / 258
页数:9
相关论文
共 50 条
  • [41] Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior
    Zhang, Xiaowen
    Huang, Wufei
    Ma, Jiaxin
    Yang, Ruizhi
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (07): : 2510 - 2523
  • [42] Bifurcation Analysis and Spatiotemporal Patterns in a Diffusive Predator-Prey Model
    Hu, Guangping
    Li, Xiaoling
    Lu, Shiping
    Wang, Yuepeng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (06):
  • [43] Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie-Gower predator-prey model
    Li, Shanbing
    Wu, Jianhua
    Nie, Hua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (12) : 3043 - 3056
  • [44] HOPF BIFURCATION IN A PREDATOR-PREY MODEL WITH TWO DELAYS
    Yingguo Li
    Annals of Applied Mathematics, 2014, 30 (03) : 312 - 317
  • [45] Hopf bifurcation for a predator-prey model with age structure
    Yan, Dongxue
    Cao, Hui
    Xu, Xiaxia
    Wang, Xiaoqin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
  • [46] Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey
    Li Feng
    Li Hongwei
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 672 - 679
  • [47] Hopf bifurcation for a predator-prey model with age structure
    Tang, Hui
    Liu, Zhihua
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (02) : 726 - 737
  • [48] Hopf bifurcation and global stability of a diffusive Gause-type predator-prey models
    Lv, Yunfei
    Pei, Yongzhen
    Yuan, Rong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (10) : 2620 - 2635
  • [49] Bifurcation analysis of a delayed diffusive predator-prey model with spatial memory and toxins
    Wu, Ming
    Yao, Hongxing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [50] Hopf bifurcation of a delayed predator-prey model with Allee effect and anti-predator behavior
    Xu, Xinyue
    Meng, Yan
    Shao, Yangyang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023, 16 (07)