Zeros of the Lerch Transcendent Function

被引:1
作者
Garunkstis, Ramunas [1 ]
Grigutis, Andrius [1 ]
机构
[1] Vilnius Univ, LT-03225 Vilnius, Lithuania
关键词
polylogarithm; Lerch transcendent; zero distribution;
D O I
10.3846/13926292.2012.662532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the distribution of zeros of the Lerch transcendent function Phi(q, s, alpha) = Sigma(infinity)(n=0) q(n) (n + alpha)(-s). We find an upper and lower estimates of zeros of the function Phi(q, s, alpha) in any rectangle {s : sigma(1) < Re s < sigma(2) <= 1.73 ... , 0 < Im s <= T}. Further we are interested in a computer calculations concerning the zeros of Phi(q, s, alpha) in {s : Re s > 1, 0 < Im s <= 1000}.
引用
收藏
页码:245 / 250
页数:6
相关论文
共 18 条
[1]  
Cassels J.W.S., 1961, J. Lond. Math. Soc, V36, P177, DOI [10.1112/jlms/s1-36.1.177, DOI 10.1112/JLMS/S1-36.1.177]
[2]  
Davenport H., 1936, J. London Math. Soc, V111, P307, DOI [10.1112/jlms/s1-11.4.307, DOI 10.1112/JLMS/S1-11.4.307]
[3]  
Davenport H., 1936, J LOND MATH SOC, V11, P111
[4]   COMPLEX ZEROS OF JONQUIERE OR POLYLOGARITHM FUNCTION [J].
FORNBERG, B ;
KOLBIG, KS .
MATHEMATICS OF COMPUTATION, 1975, 29 (130) :582-599
[5]   Questions around the Nontrivial Zeros of the Riemann Zeta-Function. Computations and Classifications [J].
Garunkstis, R. ;
Steuding, J. .
MATHEMATICAL MODELLING AND ANALYSIS, 2011, 16 (01) :72-81
[6]  
Garunkstis R, 1999, DEV MATH, V2, P129
[7]  
Garunkstis R., 1998, PROBAB THEORY MATH S, P267
[8]  
Garunkstis R., 1999, LIET MATEM RINK S, P24
[9]  
Garunkstis R., 2002, ANALYSIS-UK, V22, P1, DOI DOI 10.1524/ANLY.2002.22.1.1
[10]  
Garunkstis R, 2006, MATH COMPUT, V76, P323