Photocurrent detection of the orbital angular momentum of light

被引:153
|
作者
Ji, Zhurun [1 ]
Liu, Wenjing [1 ,2 ]
Krylyuk, Sergiy [2 ]
Fan, Xiaopeng [1 ,3 ,4 ]
Zhang, Zhifeng [5 ]
Pan, Anlian [3 ,4 ]
Feng, Liang [1 ,5 ]
Davydov, Albert [2 ]
Agarwal, Ritesh [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA
[2] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[3] Hunan Univ, Key Lab Micronano Phys & Technol Hunan Prov, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Peoples R China
[4] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[5] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
中国国家自然科学基金;
关键词
GENERATION;
D O I
10.1126/science.aba9192
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Applications that use the orbital angular momentum (OAM) of light show promise for increasing the bandwidth of optical communication networks. However, direct photocurrent detection of different OAM modes has not yet been demonstrated. Most studies of current responses to electromagnetic fields have focused on optical intensity- related effects, but phase information has been lost. In this study, we designed a photodetector based on tungsten ditelluride (WTe2) with carefully fabricated electrode geometries to facilitate direct characterization of the topological charge of OAM of light. This orbital photogalvanic effect, driven by the helical phase gradient, is distinguished by a current winding around the optical beam axis with a magnitude proportional to its quantized OAM mode number. Our study provides a route to develop on-chip detection of optical OAM modes, which can enable the development of next-generation photonic circuits.
引用
收藏
页码:763 / +
页数:42
相关论文
共 50 条
  • [1] Optomechanical detection of light with orbital angular momentum
    Kaviani, Hamidreza
    Ghobadi, Roohollah
    Behera, Bishnupada
    Wu, Marcelo
    Hryciw, Aaron
    Vo, Sonny
    Fattal, David
    Barclay, Paul
    OPTICS EXPRESS, 2020, 28 (10) : 15482 - 15496
  • [2] Nonlinear optical detection of the orbital angular momentum of light
    Kim, Ju-young
    Cho, Minhaeng
    OPTICS LETTERS, 2025, 50 (05) : 1605 - 1608
  • [3] The orbital angular momentum of light
    Allen, L
    Padgett, MJ
    Babiker, M
    PROGRESS IN OPTICS, VOL XXXIX, 1999, 39 : 291 - 372
  • [4] Self-homodyne detection of the light orbital angular momentum
    Belmonte, Aniceto
    Torres, Juan P.
    OPTICS LETTERS, 2012, 37 (14) : 2940 - 2942
  • [5] Detection of orbital angular momentum of light by forked diffraction method
    Lebedeva, E. S.
    Sedykh, K. O.
    Venediktov, I. O.
    Goltsman, G. N.
    V. Sych, D.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2022, 15 (03): : 196 - 200
  • [6] Holographic detection of the orbital angular momentum of light with plasmonic photodiodes
    Genevet, Patrice
    Lin, Jiao
    Kats, Mikhail A.
    Capasso, Federico
    NATURE COMMUNICATIONS, 2012, 3
  • [7] Holographic detection of the orbital angular momentum of light with plasmonic photodiodes
    Patrice Genevet
    Jiao Lin
    Mikhail A. Kats
    Federico Capasso
    Nature Communications, 3
  • [8] Polarization Detection Using Light's Orbital Angular Momentum
    Ma, Aning
    Intaravanne, Yuttana
    Han, Jin
    Wang, Ruoxing
    Chen, Xianzhong
    ADVANCED OPTICAL MATERIALS, 2020, 8 (18)
  • [9] Perspectives on the orbital angular momentum of light
    Forbes, Andrew
    JOURNAL OF OPTICS, 2022, 24 (12)
  • [10] Light's orbital angular momentum
    Padgett, M
    Courtial, J
    Allen, L
    PHYSICS TODAY, 2004, 57 (05) : 35 - 40