Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking

被引:47
作者
Kilen, I. [1 ]
Hader, J. [2 ]
Moloney, J. V. [1 ,2 ]
Koch, S. W. [3 ]
机构
[1] Univ Arizona, Program Appl Math, Dept Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
[3] Univ Marburg, Dept Phys, D-35032 Marburg, Germany
来源
OPTICA | 2014年 / 1卷 / 04期
关键词
SURFACE-EMITTING LASER; OUTPUT POWER; PULSES; VECSEL;
D O I
10.1364/OPTICA.1.000192
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Semiconductor disk lasers have been shown to be ideal as wavelength-agile, high-brightness sources for producing high average power under various pulsed mode-locking scenarios. Systematic microscopic modeling reveals that ultrafast nonequilibrium kinetic hole burning in electron/hole carrier distributions dictates the outcome of femtosecond duration mode-locked pulse formation. The existence of a large reservoir of unsaturated carriers within the inverted distributions leads to the emergence of multiple pulse waveforms (not necessarily harmonically mode-locked pulse trains) that inefficiently draw on these carrier reservoirs. The concept of gain is no longer meaningful in this limit, and the dynamical inversion of electrons and holes primarily in the active medium establishes the final dynamical state of the system. The simulation results explain much of the generic behavior observed in key recent experiments and point to the difficulty of pushing semiconductor mode-locked lasers to pulse durations below 100 fs. (C) 2014 Optical Society of America
引用
收藏
页码:192 / 197
页数:6
相关论文
共 16 条
[1]   Non-equilibrium analysis of the two-color operation in semiconductor quantum-well lasers [J].
Baeumner, Ada ;
Koch, Stephan W. ;
Moloney, Jerome V. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (04) :843-846
[2]  
Haug H., 2001, QUANTUM THEORY OPTIC, Vthird
[3]   Mode-locking of lasers [J].
Haus, HA .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (06) :1173-1185
[4]   106 W continuous-wave output power from vertical-external-cavity surface-emitting laser [J].
Heinen, B. ;
Wang, T. -L. ;
Sparenberg, M. ;
Weber, A. ;
Kunert, B. ;
Hader, J. ;
Koch, S. W. ;
Moloney, J. V. ;
Koch, M. ;
Stolz, W. .
ELECTRONICS LETTERS, 2012, 48 (09) :516-U102
[5]   Femtosecond high-power quantum dot vertical external cavity surface emitting laser [J].
Hoffmann, Martin ;
Sieber, Oliver D. ;
Wittwer, Valentin J. ;
Krestnikov, Igor L. ;
Livshits, Daniil A. ;
Barbarin, Yohan ;
Suedmeyer, Thomas ;
Keller, Ursula .
OPTICS EXPRESS, 2011, 19 (09) :8108-8116
[6]  
Husaini S., 2013, COMMUNICATION
[7]   Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser [J].
Klopp, P. ;
Griebner, U. ;
Zorn, M. ;
Weyers, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (07)
[8]   15W Single Frequency Optically Pumped Semiconductor Laser With Sub-Megahertz Linewidth [J].
Laurain, Alexandre ;
Mart, Cody ;
Hader, Joerg ;
Moloney, Jerome V. ;
Kunert, Bernardette ;
Stolz, Wolfgang .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26 (02) :131-133
[9]   Nonequilibrium and thermal effects in modelocked VECSELs [J].
Moloney, J. V. ;
Kilen, I. ;
Baeumner, A. ;
Scheller, M. ;
Koch, S. W. .
OPTICS EXPRESS, 2014, 22 (06) :6422-6427
[10]   A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses [J].
Quarterman, Adrian H. ;
Wilcox, Keith G. ;
Apostolopoulos, Vasilis ;
Mihoubi, Zakaria ;
Elsmere, Stephen P. ;
Farrer, Ian ;
Ritchie, David A. ;
Tropper, Anne .
NATURE PHOTONICS, 2009, 3 (12) :729-731