Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles

被引:137
作者
Greulich, C. [1 ]
Diendorf, J. [2 ]
Gessmann, J. [1 ]
Simon, T. [3 ]
Habijan, T. [1 ]
Eggeler, G. [3 ]
Schildhauer, T. A. [1 ]
Epple, M. [2 ]
Koeller, M. [1 ]
机构
[1] Ruhr Univ Bochum, Bergmannsheil Univ Hosp Surg Res, D-44789 Bochum, Germany
[2] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CeNIDE, D-45117 Essen, Germany
[3] Ruhr Univ Bochum, Inst Mat, Fac Mech Engn, D-44789 Bochum, Germany
关键词
Silver nanoparticles; Peripheral blood mononuclear cells; Cellular uptake; Cellular response; Focused ion beam; NANO-SILVER; NANOSILVER; RELEASE; MECHANISM; TOXICITY; CYTOTOXICITY; EXPRESSION; GRADIENTS; GOLD;
D O I
10.1016/j.actbio.2011.05.030
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Silver nanoparticles (Ag-NP) are increasingly used in biomedical applications because of their remarkable antimicrobial activity. In biomedicine, Ag-NP are coated onto or embedded in wound dressings, surgical instruments and bone substitute biomaterials, such as silver-containing calcium phosphate cements. Free Ag-NP and silver ions are released from these coatings or after the degradation of a biomaterial, and may come into close contact with blood cells. Despite the widespread use of Ag-NP as an antimicrobial agent, there is a serious lack of information on the biological effects of Ag-NP on human blood cells. In this study, the uptake of Ag-NP by peripheral monocytes and lymphocytes (T-cells) was analyzed, and the influence of nanosilver on cell biological functions (proliferation, the expression of adhesion molecules, cytokine release and the generation of reactive oxygen species) was studied. After cell culture in the presence of monodispersed Ag-NP (5-30 mu g ml(-1) silver concentration), agglomerates of nanoparticles were detected within monocytes (CD14+) but not in T-cells (CD3+) by light microscopy, flow cytometry and combined focused ion beam/scanning electron microscopy. The uptake rate of nanoparticles was concentration dependent, and the silver agglomerates were typically found in the cytoplasm. Furthermore, a concentration-dependent activation (e.g. an increased expression of adhesion molecule CD54) of monocytes at Ag-NP concentrations of 10-15 mu g ml(-1) was observed, and cytotoxicity of Ag-NP-treated monocytes was observed at Ag-NP levels of 25 mu g ml(-1) and higher. However, no modulation of T-cell proliferation was observed in the presence of Ag-NP. Taken together, our results provide the first evidence for a cell-type-specific uptake of Ag-NP by peripheral blood mononuclear cells (PBMC) and the resultant cellular responses after exposure. (C) 2011 Acta materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3505 / 3514
页数:10
相关论文
共 53 条
[1]  
Alberts B., 2002, The shape and structure of proteins, Vfourth, DOI 10.1093/aob/mcg023
[2]   An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement [J].
Alt, V ;
Bechert, T ;
Steinrücke, P ;
Wagener, M ;
Seidel, P ;
Dingeldein, E ;
Domann, E ;
Schnettler, R .
BIOMATERIALS, 2004, 25 (18) :4383-4391
[3]   Exploitation of intracellular pH gradients in the cellular delivery of macromolecules [J].
Asokan, A ;
Cho, MJ .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 91 (04) :903-913
[4]   Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species [J].
Carlson, C. ;
Hussain, S. M. ;
Schrand, A. M. ;
Braydich-Stolle, L. K. ;
Hess, K. L. ;
Jones, R. L. ;
Schlager, J. J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (43) :13608-13619
[5]   The uptake and intracellular fate of PLGA nanoparticles in epithelial cells [J].
Cartiera, Malgorzata S. ;
Johnson, Katherine M. ;
Rajendran, Vanathy ;
Caplan, Michael J. ;
Saltzman, W. Mark .
BIOMATERIALS, 2009, 30 (14) :2790-2798
[6]   Nanosilver: A nanoproduct in medical application [J].
Chen, X. ;
Schluesener, H. J. .
TOXICOLOGY LETTERS, 2008, 176 (01) :1-12
[7]   Uptake Mechanism of Oppositely Charged Fluorescent Nanoparticles in HeLa Cells [J].
Dausend, Julia ;
Musyanovych, Anna ;
Dass, Martin ;
Walther, Paul ;
Schrezenmeier, Hubert ;
Landfester, Katharina ;
Mailaender, Volker .
MACROMOLECULAR BIOSCIENCE, 2008, 8 (12) :1135-1143
[8]   SINGLE-STEP SEPARATION OF RED BLOOD-CELLS, GRANULOCYTES AND MONONUCLEAR LEUKOCYTES ON DISCONTINUOUS DENSITY GRADIENTS OF FICOLL-HYPAQUE [J].
ENGLISH, D ;
ANDERSEN, BR .
JOURNAL OF IMMUNOLOGICAL METHODS, 1974, 5 (03) :249-252
[9]  
Ercal Nuran, 2001, Current Topics in Medicinal Chemistry, V1, P529, DOI 10.2174/1568026013394831
[10]  
Feng QL, 2000, J BIOMED MATER RES, V52, P662, DOI 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO