Advanced electronic skin devices for healthcare applications

被引:211
作者
Ma, Zhong [1 ]
Li, Sheng [1 ]
Wang, Huiting [1 ]
Cheng, Wen [1 ]
Li, Yun [1 ]
Pan, Lijia [1 ]
Shi, Yi [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Jiangsu Prov Key Lab Photon & Elect Mat, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
FLEXIBLE PRESSURE SENSOR; HIGH-SENSITIVITY; STRAIN SENSORS; DRUG-DELIVERY; ELECTROCHEMICAL SENSOR; SEMICONDUCTING POLYMER; SILVER NANOPARTICLES; CONTROLLING RELEASE; CARBON NANOTUBES; HUMIDITY SENSOR;
D O I
10.1039/c8tb02862a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Electronic skin, a kind of flexible electronic device and system inspired by human skin, has emerged as a promising candidate for wearable personal healthcare applications. Wearable electronic devices with skin-like properties will provide platforms for continuous and real-time monitoring of human physiological signals such as tissue pressure, body motion, temperature, metabolites, electrolyte balance, and diseaserelated biomarkers. Transdermal drug delivery devices can also be integrated into electronic skin to enhance its non-invasive, real-time dynamic therapy functions. This review summarizes the recent progress in electronic skin devices for applications in human health monitoring and therapy systems as well as several potential mass production technologies such as inkjet printing and 3D printing. The opportunities and challenges in broadening the applications of electronic skin devices in practical healthcare are also discussed.
引用
收藏
页码:173 / 197
页数:25
相关论文
共 254 条
[1]   Microfluidic Immuno-Biochip for Detection of Breast Cancer Biomarkers Using Hierarchical Composite of Porous Graphene and Titanium Dioxide Nanofibers [J].
Ali, Md. Azahar ;
Mondal, Kunal ;
Jiao, Yueyi ;
Oren, Seval ;
Xu, Zhen ;
Sharma, Ashutosh ;
Dong, Liang .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (32) :20570-20582
[2]   3D-Printed Microfluidic Devices for Materials Science [J].
Alizadehgiashi, Moien ;
Gevorkian, Albert ;
Tebbe, Moritz ;
Seo, Minseok ;
Prince, Elisabeth ;
Kumacheva, Eugenia .
ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (07)
[3]   Recent Advances in Wearable Transdermal Delivery Systems [J].
Amjadi, Morteza ;
Sheykhansari, Sahar ;
Nelson, Bradley J. ;
Sitti, Metin .
ADVANCED MATERIALS, 2018, 30 (07)
[4]   A wearable multisensing patch for continuous sweat monitoring [J].
Anastasova, Salzitsa ;
Crewther, Blair ;
Bembnowicz, Pawel ;
Curto, Vincenzo ;
Ip, Henry M. D. ;
Rosa, Bruno ;
Yang, Guang-Zhong .
BIOSENSORS & BIOELECTRONICS, 2017, 93 :139-145
[5]   All-printed magnetically self-healing electrochemical devices [J].
Bandodkar, Amay J. ;
Lopez, Cristian S. ;
Mohan, Allibai Mohanan Vinu ;
Yin, Lu ;
Kumar, Rajan ;
Wang, Joseph .
SCIENCE ADVANCES, 2016, 2 (11)
[6]   Self-Healing Inks for Autonomous Repair of Printable Electrochemical Devices [J].
Bandodkar, Amay J. ;
Mohan, Vinu ;
Lopez, Cristian S. ;
Ramirez, Julian ;
Wang, Joseph .
ADVANCED ELECTRONIC MATERIALS, 2015, 1 (12)
[7]   Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability [J].
Bandodkar, Amay J. ;
Jeerapan, Itthipon ;
You, Jung-Min ;
Nunez-Flores, Rogelio ;
Wang, Joseph .
NANO LETTERS, 2016, 16 (01) :721-727
[8]   All-Printed Stretchable Electrochemical Devices [J].
Bandodkar, Amay J. ;
Nunez-Flores, Rogelio ;
Jia, Wenzhao ;
Wang, Joseph .
ADVANCED MATERIALS, 2015, 27 (19) :3060-3065
[9]   Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring [J].
Bandodkar, Amay J. ;
Hung, Vinci W. S. ;
Jia, Wenzhao ;
Valdes-Ramirez, Gabriela ;
Windmiller, Joshua R. ;
Martinez, Alexandra G. ;
Ramirez, Julian ;
Chan, Garrett ;
Kerman, Kagan ;
Wang, Joseph .
ANALYST, 2013, 138 (01) :123-128
[10]   Wearable sweat sensors [J].
Bariya, Mallika ;
Nyein, Hnin Yin Yin ;
Javey, Ali .
NATURE ELECTRONICS, 2018, 1 (03) :160-171