Existence result for fractional neutral stochastic integro-differential equations with infinite delay

被引:88
作者
Cui, Jing [1 ,2 ]
Yan, Litan [3 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[3] Donghua Univ, Dept Math, Coll Sci, Shanghai 201620, Peoples R China
关键词
HEAT-CONDUCTION; DIFFERENTIAL-INCLUSIONS;
D O I
10.1088/1751-8113/44/33/335201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the existence of mild solutions for a class of fractional neutral stochastic integro-differential equations with infinite delay in Hilbert spaces. A sufficient condition for the existence is obtained under non-Lipschitz conditions by means of Sadovskii's fixed point theorem. An example is given to illustrate the theory.
引用
收藏
页数:16
相关论文
共 26 条
[1]  
Ahmed Hamdy M., 2009, INT J MATH MATH SCI, P8
[2]  
[Anonymous], PROBABILITY DISTRIBU
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
[Anonymous], 2006, Journal of the Electrochemical Society
[5]   On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces [J].
Balachandran, K. ;
Kiruthika, S. ;
Trujillo, J. J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1157-1165
[6]   Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space [J].
Balasubramaniam, P. ;
Ntouyas, S. K. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) :161-176
[7]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350
[8]  
Da Prato G., 1992, STOCHASTIC EQUATIONS, DOI 10.1017/CBO9780511666223
[9]  
El-Borai M. M., 2006, Adv. Dyn. Syst. Appl., V1, P49
[10]   Volterra equations with fractional stochastic integrals [J].
El-Borai, MM ;
El-Nadi, KE ;
Mostafa, OL ;
Ahmed, HM .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2004, (05) :453-468