Accretive Matrices and Matrix Convex Functions

被引:8
作者
Bedrani, Yassine [1 ]
Kittaneh, Fuad [2 ]
Sababheh, Mohammed [3 ]
机构
[1] Univ 20 August 1955, Dept Math, Skikda, Algeria
[2] Univ Jordan, Dept Math, Amman 11940, Jordan
[3] Princess Sumaya Univ Technol, Amman 11941, Jordan
关键词
Sectorial matrix; accretive matrix; matrix mean; positive matrix; positive linear map;
D O I
10.1007/s00025-021-01590-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present new inequalities for accretive matrices when treated via matrix convex and matrix monotone decreasing functions; as a new direction in the study of accretive matrices.
引用
收藏
页数:14
相关论文
共 12 条
[1]   Operator log-convex functions and operator means [J].
Ando, Tsuyoshi ;
Hiai, Fumio .
MATHEMATISCHE ANNALEN, 2011, 350 (03) :611-630
[2]   From positive to accretive matrices [J].
Bedrani, Yassine ;
Kittaneh, Fuad ;
Sababheh, Mohammad .
POSITIVITY, 2021, 25 (04) :1601-1629
[3]   On the weighted geometric mean of accretive matrices [J].
Bedrani, Yassine ;
Kittaneh, Fuad ;
Sababheh, Mohammed .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
[4]   Numerical radii of accretive matrices [J].
Bedrani, Yassine ;
Kittaneh, Fuad ;
Sababheh, Mohammed .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) :957-970
[5]  
Bhatia R., 2013, Matrix Analysis, V169
[6]   Extensions of Fischer's inequality [J].
Choi, Daeshik ;
Tam, Tin-Yau ;
Zhang, Pingping .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 :311-322
[7]  
Furuta T., 2005, Monographs in Inequalities
[8]   The fast track to Lowner's theorem [J].
Hansen, Frank .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) :4557-4571
[9]  
Johnson C.R., 1972, THESIS
[10]   SOME INEQUALITIES FOR SECTOR MATRICES [J].
Lin, Minghua .
OPERATORS AND MATRICES, 2016, 10 (04) :915-921