On invariants of null curves in the pseudo-Euclidean geometry

被引:6
作者
Peksen, Omer [1 ]
Khadjiev, Djavvat [1 ]
机构
[1] Karadeniz Tech Univ, Trabzon, Turkey
关键词
Curve; Null curve; Pseudo-Euclidean geometry; Invariant parametrization; COMPLETE SYSTEM; THEOREM;
D O I
10.1016/j.difgeo.2011.04.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M(n, p) be the group of all transformations of an n-dimensional pseudo-Euclidean space E-p(n) of index p generated by all pseudo-orthogonal transformations and parallel translations of E-p(n). Definitions of a pseudo-Euclidean type of a null curve, an invariant parametrization of a null curve and an M(n, p)-equivalence of curves are introduced. All possible invariant parametrizations of a null curve with a fixed pseudo-Euclidean type are described. The problem of the M(n, p)-equivalence of null curves is reduced to that of null paths. Global conditions of the M(n, p)-equivalence of null curves are given in terms of the pseudo-Euclidean type of a null curve and the system of polynomial differential M(n, p)-invariants of a null curve x(s). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:S183 / S187
页数:5
相关论文
共 50 条
[41]   THE INVARIANTS OF A PAIR OF DIRECTIONS IN GEOMETRY E-1(n) AND THEIR INTERPRETATION [J].
Misiak, Aleksander ;
Stasiak, Eugeniusz ;
Szmuksta-Zawadzka, Maria .
DEMONSTRATIO MATHEMATICA, 2013, 46 (02) :361-371
[42]   Diophantine and tropical geometry, and uniformity of rational points on curves [J].
Katz, Eric ;
Rabinoff, Joseph ;
Zureick-Brown, David .
ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 :231-279
[43]   The Geometry and Matching of Lines and Curves Over Multiple Views [J].
Cordelia Schmid ;
Andrew Zisserman .
International Journal of Computer Vision, 2000, 40 :199-233
[44]   The geometry and matching of lines and curves over multiple views [J].
Schmid, C ;
Zisserman, A .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2000, 40 (03) :199-233
[45]   Geometry control of the junction between two fractal curves [J].
Podkorytov, Sergey ;
Gentil, Christian ;
Sokolov, Dmitry ;
Lanquetin, Sandrine .
COMPUTER-AIDED DESIGN, 2013, 45 (02) :424-431
[46]   Some Singular Curves and Surfaces Arising from Invariants of Complex Reflection Groups [J].
Bonnafe, Cedric .
EXPERIMENTAL MATHEMATICS, 2019, :429-440
[47]   CONFORMAL INVARIANTS FOR CURVES AND SURFACES IN 3-DIMENSIONAL SPACE-FORMS [J].
CAIRNS, G ;
SHARPE, R ;
WEBB, L .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (03) :933-959
[48]   AN OBSTRUCTION BUNDLE RELATING GROMOV-WITTEN INVARIANTS OF CURVES AND KAHLER SURFACES [J].
Lee, Junho ;
Parker, Thomas H. .
AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (02) :453-506
[49]   Spin coefficients for four-dimensional neutral metrics, and null geometry [J].
Law, Peter R. .
JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (08) :1087-1126
[50]   Lorentzian stationary surfaces and bi-null curves in R25 [J].
Ucum, Ali ;
Sakaki, Makoto ;
Ilarslan, Kazim .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (10)