On invariants of null curves in the pseudo-Euclidean geometry

被引:6
作者
Peksen, Omer [1 ]
Khadjiev, Djavvat [1 ]
机构
[1] Karadeniz Tech Univ, Trabzon, Turkey
关键词
Curve; Null curve; Pseudo-Euclidean geometry; Invariant parametrization; COMPLETE SYSTEM; THEOREM;
D O I
10.1016/j.difgeo.2011.04.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M(n, p) be the group of all transformations of an n-dimensional pseudo-Euclidean space E-p(n) of index p generated by all pseudo-orthogonal transformations and parallel translations of E-p(n). Definitions of a pseudo-Euclidean type of a null curve, an invariant parametrization of a null curve and an M(n, p)-equivalence of curves are introduced. All possible invariant parametrizations of a null curve with a fixed pseudo-Euclidean type are described. The problem of the M(n, p)-equivalence of null curves is reduced to that of null paths. Global conditions of the M(n, p)-equivalence of null curves are given in terms of the pseudo-Euclidean type of a null curve and the system of polynomial differential M(n, p)-invariants of a null curve x(s). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:S183 / S187
页数:5
相关论文
共 50 条
[31]   A Transcendence Basis in the Differential Field of Invariants of Pseudo-Galilean Group [J].
Muminov, K. K. ;
Chilin, V. I. .
RUSSIAN MATHEMATICS, 2019, 63 (03) :15-24
[32]   The geometry of the moduli space of curves and abelian varieties [J].
Tommasi, Orsola .
SURVEYS ON RECENT DEVELOPMENTS IN ALGEBRAIC GEOMETRY, 2017, 95 :81-100
[33]   On the geometry of curves and conformal geodesics in the Mobius space [J].
Magliaro, Marco ;
Mari, Luciano ;
Rigoli, Marco .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 40 (02) :133-165
[34]   Quot schemes, Segre invariants, and inflectional loci of scrolls over curves [J].
George H. Hitching .
Geometriae Dedicata, 2020, 205 :1-19
[35]   Quot schemes, Segre invariants, and inflectional loci of scrolls over curves [J].
Hitching, George H. .
GEOMETRIAE DEDICATA, 2020, 205 (01) :1-19
[36]   Some characterizations of null osculating curves in the Minkowski space-time [J].
Ilarslan, Kazim ;
Nesovic, Emilija .
PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2012, 61 (01) :1-8
[37]   On harmonic curvatures of null curves of the AW(k)-type in Lorentzian space [J].
Kulahci, Mihriban ;
Bektas, Mehmet ;
Erguet, Mahmut .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (5-6) :248-252
[38]   DIRECTIONAL ASSOCIATED CURVES OF A NULL CURVE IN MINKOWSKI 3-SPACE [J].
Qian, Jinhua ;
Kim, Young Ho .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) :183-200
[39]   Complete and computable orbit invariants in the geometry of the affine group over the integers [J].
Mundici, Daniele .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (05) :1843-1871
[40]   Lorentzian stationary surfaces and null curves in R-2(4) [J].
Sakaki, Makoto .
JOURNAL OF GEOMETRY, 2014, 105 (02) :359-368