On invariants of null curves in the pseudo-Euclidean geometry

被引:6
作者
Peksen, Omer [1 ]
Khadjiev, Djavvat [1 ]
机构
[1] Karadeniz Tech Univ, Trabzon, Turkey
关键词
Curve; Null curve; Pseudo-Euclidean geometry; Invariant parametrization; COMPLETE SYSTEM; THEOREM;
D O I
10.1016/j.difgeo.2011.04.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M(n, p) be the group of all transformations of an n-dimensional pseudo-Euclidean space E-p(n) of index p generated by all pseudo-orthogonal transformations and parallel translations of E-p(n). Definitions of a pseudo-Euclidean type of a null curve, an invariant parametrization of a null curve and an M(n, p)-equivalence of curves are introduced. All possible invariant parametrizations of a null curve with a fixed pseudo-Euclidean type are described. The problem of the M(n, p)-equivalence of null curves is reduced to that of null paths. Global conditions of the M(n, p)-equivalence of null curves are given in terms of the pseudo-Euclidean type of a null curve and the system of polynomial differential M(n, p)-invariants of a null curve x(s). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:S183 / S187
页数:5
相关论文
共 50 条
[21]   Arnold-type invariants of curves on surfaces [J].
Tchernov, V .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (01) :71-97
[22]   Functional information geometry of Euclidean quantum fields [J].
Floerchinger, Stefan .
PHYSICAL REVIEW D, 2024, 110 (12)
[23]   Harmonic maps into the orthogonal group and null curves [J].
Maria João Ferreira ;
Bruno Ascenso Simões ;
John C. Wood .
Mathematische Zeitschrift, 2019, 293 :181-220
[24]   Harmonic maps into the orthogonal group and null curves [J].
Ferreira, Maria Joao ;
Simoes, Bruno Ascenso ;
Wood, John C. .
MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (1-2) :181-220
[25]   Geometrical particles and Legendrian dualities related to null curves [J].
Wang, Chunxiao ;
Zhou, Qingxin ;
Wang, Zhigang .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (09)
[26]   The pseudo-null geometric phase along optical fiber [J].
Gurbuz, Nevin Ertug .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (14)
[27]   GENERALIZED NULL BERTRAND CURVES IN MINKOWSKI SPACE-TIME [J].
Aksoyak, Ferdag Kahraman ;
Gok, Ismail ;
Ilarslan, Kazim .
ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2014, 60 (02) :489-502
[28]   NULL CURVES IN A SEMI-RIEMANNIAN MANIFOLD OF INDEX 2 [J].
Jin, Dae Ho .
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2007, 14 (04) :231-253
[29]   On Some Curves with Modified Orthogonal Frame in Euclidean 3-Space [J].
Lone, Mohamd Saleem ;
Hasan, E. S. ;
Karacan, Murat Kemal ;
Bukcu, Bahaddin .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4) :1905-1916
[30]   C-2 Elastic Curves in Euclidean 3-Space [J].
Turhan, Tunahan ;
Tukel, Gozde O. ;
Yucesan, Ahmet .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (02) :110-114