On invariants of null curves in the pseudo-Euclidean geometry

被引:6
|
作者
Peksen, Omer [1 ]
Khadjiev, Djavvat [1 ]
机构
[1] Karadeniz Tech Univ, Trabzon, Turkey
关键词
Curve; Null curve; Pseudo-Euclidean geometry; Invariant parametrization; COMPLETE SYSTEM; THEOREM;
D O I
10.1016/j.difgeo.2011.04.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M(n, p) be the group of all transformations of an n-dimensional pseudo-Euclidean space E-p(n) of index p generated by all pseudo-orthogonal transformations and parallel translations of E-p(n). Definitions of a pseudo-Euclidean type of a null curve, an invariant parametrization of a null curve and an M(n, p)-equivalence of curves are introduced. All possible invariant parametrizations of a null curve with a fixed pseudo-Euclidean type are described. The problem of the M(n, p)-equivalence of null curves is reduced to that of null paths. Global conditions of the M(n, p)-equivalence of null curves are given in terms of the pseudo-Euclidean type of a null curve and the system of polynomial differential M(n, p)-invariants of a null curve x(s). (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:S183 / S187
页数:5
相关论文
共 50 条