Accurate closed-form solution of the SIR epidemic model

被引:72
作者
Barlow, Nathaniel S. [1 ]
Weinstein, Steven J. [1 ,2 ]
机构
[1] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[2] Rochester Inst Technol, Dept Chem Engn, Rochester, NY 14623 USA
关键词
Approximant; SIR model; Asymptotic analysis; Analytic solution;
D O I
10.1016/j.physd.2020.132540
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An accurate closed-form solution is obtained to the SIR Epidemic Model through the use of Asymptotic Approximants (Barlow et al., 2017). The solution is created by analytically continuing the divergent power series solution such that it matches the long-time asymptotic behavior of the epidemic model. The utility of the analytical form is demonstrated through its application to the COVID-19 pandemic. (C) 2020 Elsevier V. All rights reserved.
引用
收藏
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1948, COMPLEX VARIABLES
[2]   ON THE SUMMATION OF DIVERGENT, TRUNCATED, AND UNDERSPECIFIED POWER SERIES VIA ASYMPTOTIC APPROXIMANTS [J].
Barlow, N. S. ;
Stanton, C. R. ;
Hill, N. ;
Weinstein, S. J. ;
Cio, A. G. .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2017, 70 (01) :21-48
[3]   An asymptotically consistent approximant method with application to soft- and hard-sphere fluids [J].
Barlow, N. S. ;
Schultz, A. J. ;
Weinstein, S. J. ;
Kofke, D. A. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (20)
[4]   An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes [J].
Barlow, Nathaniel S. ;
Weinstein, Steven J. ;
Faber, Joshua A. .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (13)
[5]   Communication: Analytic continuation of the virial series through the critical point using parametric approximants [J].
Barlow, Nathaniel S. ;
Schultz, Andrew J. ;
Weinstein, Steven J. ;
Kofke, David A. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (07)
[6]   Critical Isotherms from Virial Series Using Asymptotically Consistent Approximants [J].
Barlow, Nathaniel S. ;
Schultz, Andrew J. ;
Kofke, David A. ;
Weinstein, Steven J. .
AICHE JOURNAL, 2014, 60 (09) :3336-3349
[7]  
Beachley R.J., 2018, Class. Quant. Grav, V35, P1
[8]   ASYMPTOTIC APPROXIMANT FOR THE FALKNER-SKAN BOUNDARY LAYER EQUATION [J].
Belden, E. R. ;
Dickman, Z. A. ;
Weinstein, S. J. ;
Archibee, A. D. ;
Burroughs, E. ;
Barlow, N. S. .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2020, 73 (01) :36-50
[9]  
Bender C. M., 1978, Advanced Mathematical Methods for Scientists and Engineers
[10]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653