Consistent Pseudo-Maximum Likelihood Estimators and Groups of Transformations

被引:3
|
作者
Gourieroux, C. [1 ,2 ]
Monfort, A. [3 ]
Zakoian, J. -M. [3 ,4 ]
机构
[1] Univ Toronto, TSE, Toronto, ON, Canada
[2] PSL, Dauphine, Paris, France
[3] CREST, ENSAE, Paris, France
[4] Univ Lille, Lille, France
关键词
Pseudo-maximum likelihood; transformation model; identification; consistency; stochastic volatility; conditional heteroscedasticity; spatial interactions; INDEPENDENT COMPONENT ANALYSIS; GARCH MODELS;
D O I
10.3982/ECTA14727
中图分类号
F [经济];
学科分类号
02 ;
摘要
In a transformation model yt=c[a(xt,beta),ut], where the errors ut are i.i.d. and independent of the explanatory variables xt, the parameters can be estimated by a pseudo-maximum likelihood (PML) method, that is, by using a misspecified distribution of the errors, but the PML estimator of beta is in general not consistent. We explain in this paper how to nest the initial model in an identified augmented model with more parameters in order to derive consistent PML estimators of appropriate functions of parameter beta. The usefulness of the consistency result is illustrated by examples of systems of nonlinear equations, conditionally heteroscedastic models, stochastic volatility, or models with spatial interactions.
引用
收藏
页码:327 / 345
页数:19
相关论文
共 50 条
  • [1] Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators
    Broze, L
    Gourieroux, C
    JOURNAL OF ECONOMETRICS, 1998, 85 (01) : 75 - 98
  • [2] STATISTICAL-INFERENCE BASED ON PSEUDO-MAXIMUM LIKELIHOOD ESTIMATORS IN ELLIPTIC POPULATIONS
    KANO, Y
    BERKANE, M
    BENTLER, PM
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 135 - 143
  • [3] Pseudo-maximum likelihood estimators in linear regression models with fractional time series
    Hongchang Hu
    Weifu Hu
    Xinxin Yu
    Statistical Papers, 2021, 62 : 639 - 659
  • [4] Pseudo-maximum likelihood estimators in linear regression models with fractional time series
    Hu, Hongchang
    Hu, Weifu
    Yu, Xinxin
    STATISTICAL PAPERS, 2021, 62 (02) : 639 - 659
  • [5] Consistent non-Gaussian pseudo maximum likelihood estimators
    Fiorentini, Gabriele
    Sentana, Enrique
    JOURNAL OF ECONOMETRICS, 2019, 213 (02) : 321 - 358
  • [6] Pseudo-maximum likelihood estimation of ARCH(∞) models
    Robinson, Peter M.
    Zaffaroni, Paolo
    ANNALS OF STATISTICS, 2006, 34 (03): : 1049 - 1074
  • [7] ON MAXIMUM LIKELIHOOD AND PSEUDO-MAXIMUM LIKELIHOOD ESTIMATION IN COMPOUND INSURANCE MODELS WITH DEDUCTIBLES
    Paulsen, Jostein
    Stubo, Knut
    ASTIN BULLETIN, 2011, 41 (01): : 1 - 28
  • [8] Adaptive pseudo-maximum likelihood data estimation algorithm
    Sadjadpour, HR
    Weber, CL
    CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 32 - 36
  • [9] Simplified pseudo-maximum likelihood data estimation algorithm
    Sadjadpour, HR
    Weber, CL
    THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 435 - 439
  • [10] Pseudo-Maximum Likelihood Estimation of ballistic missile precession frequency
    Liu, Lihua
    Ghogho, Mounir
    McLernon, Des
    Hu, Weidong
    SIGNAL PROCESSING, 2012, 92 (09) : 2018 - 2028