Novel strategy for applying hierarchical density-based spatial clustering of applications with noise towards spectroscopic analysis and detection of melanocytic lesions

被引:2
作者
Ye, Jason Yuan [1 ,2 ]
Yu, Christopher [3 ]
Husman, Tiffany [1 ]
Chen, Bryan [1 ]
Trikala, Aryaman [1 ]
机构
[1] Univ Calif Los Angeles, 330 De Neve Dr, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, UCLA Microbiome Ctr, Los Angeles, CA 90095 USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
Clustering; dermoscopy; hierarchical density-based spatial clustering of applications with noise; machine learning; MELANOMA;
D O I
10.1097/CMR.0000000000000771
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Advancements in dermoscopy techniques have elucidated identifiable characteristics of melanoma which revolve around the asymmetrical constitution of melanocytic lesions consequent of unfettered proliferative growth as a malignant lesion. This study explores the applications of hierarchical density-based spatial clustering of applications with noise (HDBSCAN) in terms of the direct diagnostic implications of applying agglomerative clustering in the spectroscopic analysis of malignant melanocytic lesions and benign dermatologic spots. 100 images of benign (n=50) and malignant moles (n=50) were sampled from the International Skin Imaging Collaboration Archive and processed through two separate Python algorithms. The first of which deconvolutes the three-digit tupled integer identifiers of pixel color in image composition into three separate matrices corresponding to the red, green and blue color channel. Statistical characterization of integer variance was utilized to determine the optimal channel for comparative analysis between malignant and benign image groups. The second applies HDBSCAN to the matrices, identifying agglomerative clustering in the dataset. The results indicate the potential diagnostic applications of HDBSCAN analysis in fast-processing dermoscopy, as optimization of clustering parameters according to a binary search strategy produced an accuracy of 85 0 /0 in the classification of malignant and benign melanocytic lesions. Copyright (C) 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
引用
收藏
页码:526 / 532
页数:7
相关论文
共 19 条
[1]  
Aimilios L, 2017, CUTANEOUS MELANOMA P, V1st, P28
[2]   Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions - Comparison of the ABCD rule of dermatoscopy and a new 7-Point checklist based on pattern analysis [J].
Argenziano, G ;
Fabbrocini, G ;
Carli, P ;
De Giorgi, V ;
Sammarco, E ;
Delfino, M .
ARCHIVES OF DERMATOLOGY, 1998, 134 (12) :1563-1570
[3]   Melanoma: clinical and dermoscopic diagnosis [J].
Brancaccio, Gabriella ;
Russo, Teresa ;
Lallas, Aimilios ;
Moscarella, Elvira ;
Agozzino, Marina ;
Argenziano, Giuseppe .
GIORNALE ITALIANO DI DERMATOLOGIA E VENEREOLOGIA, 2017, 152 (03) :213-223
[4]  
Campello Ricardo J. G. B., 2013, Advances in Knowledge Discovery and Data Mining. 17th Pacific-Asia Conference (PAKDD 2013). Proceedings, P160, DOI 10.1007/978-3-642-37456-2_14
[5]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547
[6]   Cutaneous melanoma [J].
Eggermont, Alexander M. M. ;
Spatz, Alan ;
Robert, Caroline .
LANCET, 2014, 383 (9919) :816-827
[7]   The prevalence of seborrheic keratoses in people aged 15 to 30 years -: Is the term senile keratosis redundant? [J].
Gill, D ;
Dorevitch, A ;
Marks, R .
ARCHIVES OF DERMATOLOGY, 2000, 136 (06) :759-762
[8]  
Holmes G Alden, 2018, Fed Pract, V35, pS39
[9]   Analysis of density based and fuzzy c-means clustering methods on lesion border extraction in dermoscopy images [J].
Kockara, Sinan ;
Mete, Mutlu ;
Chen, Bernard ;
Aydin, Kemal .
BMC BIOINFORMATICS, 2010, 11
[10]   Density-based parallel skin lesion border detection with webCL [J].
Lemon, James ;
Kockara, Sinan ;
Halic, Tansel ;
Mete, Mutlu .
BMC BIOINFORMATICS, 2015, 16