Gyrokinetic study of electromagnetic effects on toroidal momentum transport in tokamak plasmas

被引:12
作者
Hein, T. [1 ]
Angioni, C. [1 ]
Fable, E. [1 ]
Candy, J. [2 ]
Peeters, A. G. [3 ]
机构
[1] Max Planck Inst Plasma Phys, IPP EURATOM Assoc, D-85748 Garching, Germany
[2] Gen Atom Co, San Diego, CA 92186 USA
[3] Univ Bayreuth, Dept Phys, D-95440 Bayreuth, Germany
关键词
TURBULENCE SIMULATIONS; MODEL; ROTATION;
D O I
10.1063/1.3609841
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effect of a finite beta(e) = 8 pi n(e)T(e)/B-2 on the turbulent transport of toroidal momentum in tokamak plasmas is discussed. From an analytical gyrokinetic model as well as local linear gyrokinetic simulations, it is shown that the modification of the parallel mode structure due to the nonadiabatic response of passing electrons, which changes the parallel wave vector k(parallel to) with increasing beta(e), leads to a decrease in size of both the diagonal momentum transport as well as the Coriolis pinch under ion temperature gradient turbulence conditions, while for trapped electron modes, practically no modification is found. The decrease is particularly strong close to the onset of the kinetic ballooning modes. There, the Coriolis pinch even reverses its direction. (C) 2011 American Institute of Physics. [doi:10.1063/1.3609841]
引用
收藏
页数:9
相关论文
共 50 条
[31]   Characteristics of constrained turbulent transport in flux-driven toroidal plasmas [J].
Kishimoto, Y. ;
Imadera, K. ;
Ishizawa, A. ;
Wang, W. ;
Li, J. Q. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2242)
[32]   New Paradigm for Turbulent Transport Across a Steep Gradient in Toroidal Plasmas [J].
Xie, H. S. ;
Xiao, Y. ;
Lin, Z. .
PHYSICAL REVIEW LETTERS, 2017, 118 (09)
[33]   Control of internal transport barriers in magnetically confined tokamak burning plasmas [J].
Panta, S. R. ;
Newman, D. E. ;
Terry, P. W. ;
Sanchez, R. .
PHYSICS OF PLASMAS, 2022, 29 (12)
[34]   Effects of electron cyclotron heating on the toroidal flow in LHD plasmas [J].
Yamamoto, Y. ;
Murakami, S. ;
Chang, C. C. ;
Takahashi, H. ;
Ida, K. ;
Yoshinuma, M. ;
Ko, W. H. .
PHYSICS OF PLASMAS, 2021, 28 (10)
[35]   Effects of 3D magnetic perturbations on toroidal plasmas [J].
Callen, J. D. .
NUCLEAR FUSION, 2011, 51 (09)
[36]   Transport of parallel momentum by toroidal ion temperature gradient instability near marginality [J].
Yoon, E. S. ;
Hahm, T. S. .
NUCLEAR FUSION, 2010, 50 (06)
[37]   An analytic model for the collisional transport and poloidal asymmetry distribution of impurities in tokamak plasmas [J].
Maget, Patrick ;
Manas, Pierre ;
Frank, Judith ;
Nicolas, Timothee ;
Agullo, Olivier ;
Garbet, Xavier .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (10)
[38]   The possible role of Reynolds stress in the creation of a transport barrier in tokamak edge plasmas [J].
Vergote, M ;
Van Schoor, M ;
Xu, Y ;
Jachmich, S ;
Weynants, R ;
Hron, M ;
Stöckel, J .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (03) :389-400
[39]   Toroidal flows and radial electric field during the formation of an internal transport barrier in a tokamak plasma [J].
Wang, Shaojie .
PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (01)
[40]   Formation, propagation and conversion of transport barriers triggered by dynamical critical gradient in tokamak plasmas [J].
Li, Xiaobo ;
Guo, Zhibin ;
Diamond, Patrick H. .
NUCLEAR FUSION, 2024, 64 (04)