A hierarchical a posteriori error estimate for an advection-diffusion-reaction problem

被引:24
作者
Araya, R
Poza, AH
Stephan, EP
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
advection problem; boundary layers; a posteriori error estimate; bubble functions;
D O I
10.1142/S0218202505000674
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce a new a posteriori error estimate of hierarchical type for the advection-diffusion-reaction equation. We prove the equivalence between the energy norm of the error and our error estimate using an auxiliary linear problem for the residual and an easy way to prove inf-sup condition.
引用
收藏
页码:1119 / 1139
页数:21
相关论文
共 13 条
[1]  
ARAYA R, IN PRESS APPL NUMER
[2]   Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems [J].
Brezzi, F ;
Marini, D ;
Russo, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) :51-63
[3]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[4]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[5]   Small data oscillation implies the saturation assumption [J].
Dörfler, W ;
Nochetto, RH .
NUMERISCHE MATHEMATIK, 2002, 91 (01) :1-12
[6]   On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation [J].
Franca, LP ;
Valentin, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (13-14) :1785-1800
[7]   A numerical study of a posteriori error estimators for convection-diffusion equations [J].
John, V .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (5-7) :757-781
[8]  
KNOPP T, 2002, COMPUT METH APPL MEC, V190, P1785
[9]  
NOCHETTO RH, 1993, I LOMBARDO SCI LET A, V127, P67
[10]  
ROOS HG, 1996, SPRINGER SERIES COMP, V24