Evolutionary conservation of nested MIR159 structural microRNA genes and their promoter characterization in Arabidopsis thaliana

被引:3
作者
Imran, Muhammad [1 ]
Liu, Tengfei [1 ]
Wang, Zheng [2 ]
Wang, Min [1 ]
Liu, Shulin [1 ]
Gao, Xinyan [1 ,3 ]
Wang, Anning [1 ,3 ]
Liu, Songfeng [1 ,3 ]
Tian, Zhixi [1 ,3 ]
Zhang, Min [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Innovat Acad Seed Design, State Key Lab Plant Cell & Chromosome Engn, Beijing, Peoples R China
[2] Beijing Acad Agr & Forestry Sci BAAFS, Beijing Vegetable Res Ctr BVRC, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2022年 / 13卷
基金
中国国家自然科学基金;
关键词
Arabidopsis; MIR159; miR159; nested miRNA structure; evolutionary analysis; promoter analysis; expression profile; SMALL RNAS; 5'-UNTRANSLATED REGION; PLANT MICRORNAS; BIOGENESIS; EXPRESSION; SEQUENCE; TARGETS; SET; MECHANISM; DIVERSE;
D O I
10.3389/fpls.2022.948751
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MicroRNAs (miRNAs) are endogenous small RNAs, that are vital for gene expression regulation in eukaryotes. Whenever a pri-miRNA precursor includes another miRNA precursor, and both of these precursors may generate independent, non-overlapping mature miRNAs, we named them nested miRNAs. However, the extent of nested miR159 structural evolutionary conservation and its promoter characterization remains unknown. In this study, the sequence alignment and phylogenetic analysis reveal that the MIR159 family is ancient, and its nested miR159 structures are evolutionary conserved in different plant species. The overexpression of ath-MIR159a, including the 1.2 kb downstream region, has no effect on rescuing the mir159ab phenotype. The promoter truncation results revealed that the 1.0 kb promoter of ath-MIR159a is sufficient for rescuing the mir159ab phenotype. The cis-regulatory elements in the ath-miR159a promoters indicated functions related to different phytohormones, abiotic stresses, and transcriptional activation. While the MybSt1 motif-containing region is not responsible for activating the regulation of the miR159a promoter. The qRT-PCR results showed that overexpression of ath-MIR159a led to high expression levels of miR159a.1-5 and miR159a.1-3 and complemented the growth defect of mir159ab via downregulation of MYB33 and MYB65. Furthermore, continuously higher expression of the miR159a.2 duplex in transgenic lines with the curly leaf phenotype indicates that miR159a.2 is functional in Arabidopsis and suggests that it is possible for a miRNA precursor to encode several regulatory small RNAs in plants. Taken together, our study demonstrates that the nested miR159 structure is evolutionary conserved and miRNA-mediated gene regulation is more complex than previously thought.
引用
收藏
页数:12
相关论文
共 62 条
[1]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[2]   Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome [J].
Addo-Quaye, Charles ;
Snyder, Jo Ann ;
Park, Yong Bum ;
Li, Yong-Fang ;
Sunkar, Ramanjulu ;
Axtell, Michael J. .
RNA, 2009, 15 (12) :2112-2121
[3]   Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family [J].
Allen, Robert S. ;
Li, Junyan ;
Stahle, Melissa I. ;
Dubroue, Aurelie ;
Gubler, Frank ;
Millar, Anthony A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (41) :16371-16376
[4]  
Allen Robert S, 2010, Silence, V1, P18, DOI 10.1186/1758-907X-1-18
[5]   Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress [J].
Arenas-Huertero, Catalina ;
Perez, Beatriz ;
Rabanal, Fernando ;
Blanco-Melo, Daniel ;
De la Rosa, Carlos ;
Estrada-Navarrete, Georgina ;
Sanchez, Federico ;
Alicia Covarrubias, Alejandra ;
Luis Reyes, Jose .
PLANT MOLECULAR BIOLOGY, 2009, 70 (04) :385-401
[6]   Evolution of plant microRNAs and their targets [J].
Axtell, Michael J. ;
Bowman, John L. .
TRENDS IN PLANT SCIENCE, 2008, 13 (07) :343-349
[7]   Vive la difference: biogenesis and evolution of microRNAs in plants and animals [J].
Axtell, Michael J. ;
Westholm, Jakub O. ;
Lai, Eric C. .
GENOME BIOLOGY, 2011, 12 (04)
[8]   Antiquity of microRNAs and their targets in land plants [J].
Axtell, MJ ;
Bartel, DP .
PLANT CELL, 2005, 17 (06) :1658-1673
[9]   A NOVEL DNA-BINDING PROTEIN WITH HOMOLOGY TO MYB ONCOPROTEINS CONTAINING ONLY ONE REPEAT CAN FUNCTION AS A TRANSCRIPTIONAL ACTIVATOR [J].
BARANOWSKIJ, N ;
FROHBERG, C ;
PRAT, S ;
WILLMITZER, L .
EMBO JOURNAL, 1994, 13 (22) :5383-5392
[10]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29