Generic polynomials are descent-generic

被引:21
作者
Kemper, G [1 ]
机构
[1] Univ Heidelberg, IWR, D-69120 Heidelberg, Germany
关键词
Mathematics Subject Classification (2000): 12F10, 12F12;
D O I
10.1007/s002290170015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g(X) is an element of K(t(l),...,t(m))[X] be a generic polynomial for a group G in the sense that every Galois extension N/L of infinite fields with group G and K less than or equal to L is given by a specialization of g(X). We prove that then also every Galois extension whose group is a subgroup of G is given in this way.
引用
收藏
页码:139 / 141
页数:3
相关论文
共 6 条
[1]   Galois embeddings for linear groups [J].
Abhyankar, SS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (08) :3881-3912
[2]   GENERIC POLYNOMIALS [J].
DEMEYER, FR .
JOURNAL OF ALGEBRA, 1983, 84 (02) :441-448
[3]   Generic polynomials with few parameters [J].
Kemper, G ;
Mattig, E .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (06) :843-857
[4]   Generic extensions and generic polynomials [J].
Ledet, A .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (06) :867-872
[5]   GENERIC GALOIS EXTENSIONS AND PROBLEMS IN FIELD-THEORY [J].
SALTMAN, DJ .
ADVANCES IN MATHEMATICS, 1982, 43 (03) :250-283
[6]  
[No title captured]