The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again)

被引:22
作者
Mandra, Salvatore [1 ,2 ]
Katzgraber, Helmut G. [3 ,4 ,5 ]
Thomas, Creighton [6 ]
机构
[1] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab, Moffett Field, CA 94035 USA
[2] Stinger & Ghaffarian Technol, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA
[3] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[4] 1QB Informat Technol, Vancouver, BC V6B 4W4, Canada
[5] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
[6] Google Inc, 111 8th Ave, New York, NY 10011 USA
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2017年 / 2卷 / 03期
基金
美国国家科学基金会;
关键词
quantum annealing; spin glasses; P versus NP; exact algorithms; benchmarking;
D O I
10.1088/2058-9565/aa7877
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In an effort to overcome the limitations of random spin-glass benchmarks for quantum annealers, focus has shifted to carefully crafted gadget-based problems whose logical structure typically has a planar topology. Recent experiments on these gadget problems using a commercially available quantum annealer have demonstrated an impressive performance over a selection of commonly used classical optimisation heuristics. Here, we show that efficient classical optimisation techniques, such as minimum-weight-perfect matching, can solve these gadget problems exactly and in polynomial time. We present approaches on how to mitigate this shortcoming of commonly used benchmark problems based on planar logical topologies.
引用
收藏
页数:6
相关论文
共 22 条
  • [1] [Anonymous], UNPUB
  • [2] [Anonymous], ARXIVCONDMAT14093934
  • [3] [Anonymous], ARXIVQUANTPHYS170104
  • [4] Boixo S, 2014, NAT PHYS, V10, P218, DOI [10.1038/nphys2900, 10.1038/NPHYS2900]
  • [5] Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor
    Bunyk, Paul I.
    Hoskinson, Emile M.
    Johnson, Mark W.
    Tolkacheva, Elena
    Altomare, Fabio
    Berkley, Andrew J.
    Harris, Richard
    Hilton, Jeremy P.
    Lanting, Trevor
    Przybysz, Anthony J.
    Whittaker, Jed
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (04)
  • [6] What is the Computational Value of Finite-Range Tunneling?
    Denchev, Vasil S.
    Boixo, Sergio
    Isakov, Sergei V.
    Ding, Nan
    Babbush, Ryan
    Smelyanskiy, Vadim
    Martinis, John
    Neven, Hartmut
    [J]. PHYSICAL REVIEW X, 2016, 6 (03):
  • [7] Farhi E., 2000, Quantum computation by adiabatic evolution
  • [8] Hamze F., 2004, P C UNCERTAINTY ARTI, P243
  • [9] Hartmann A.K., 2002, Optimization algorithms in physics
  • [10] Hartmann AKand, NEW OPTIMIZATION ALG