Evaluating severity of white matter lesions from computed tomography images with convolutional neural network

被引:12
作者
Pitkanen, Johanna [1 ,2 ]
Koikkalainen, Juha [3 ,4 ]
Nieminen, Tuomas [3 ,4 ]
Marinkovic, Ivan [1 ,2 ]
Curtze, Sami [1 ,2 ]
Sibolt, Gerli [1 ,2 ]
Jokinen, Hanna [1 ,2 ,5 ]
Rueckert, Daniel [6 ]
Barkhof, Frederik [7 ,8 ,9 ,10 ,11 ]
Schmidt, Reinhold [12 ]
Pantoni, Leonardo [13 ]
Scheltens, Philip [12 ,14 ]
Wahlund, Lars-Olof [15 ]
Korvenoja, Antti [2 ,16 ]
Lotjonen, Jyrki [3 ,4 ]
Erkinjuntti, Timo [1 ,2 ]
Melkas, Susanna [1 ,2 ]
机构
[1] Univ Helsinki, Dept Neurol, POB 302, Helsinki 00029, Finland
[2] Helsinki Univ Hosp, POB 302, Helsinki 00029, Finland
[3] Combinostics Ltd, Tampere, Finland
[4] VTT Tech Res Ctr Finland, Tampere, Finland
[5] Univ Helsinki, Fac Med, Dept Psychol & Logoped, Helsinki, Finland
[6] Imperial Coll London, Biomed Image Anal Grp, Dept Comp, London, England
[7] Vrije Univ Amsterdam, Dept Radiol & Nucl Med, Med Ctr, Neurosci Campus Amsterdam, Amsterdam, Netherlands
[8] UCL, Inst Neurol, London, England
[9] UCL, Inst Healthcare Engn, London, England
[10] Univ Coll London Hosp NHS Fdn Trust, NIHR Biomed Res Ctr, London, England
[11] UCL, London, England
[12] Vrije Univ Amsterdam, Dept Neurol, Med Ctr, Neurosci Campus Amsterdam, Amsterdam, Netherlands
[13] Univ Milan, L Sacco Dept Biomed & Clin Sci, Milan, Italy
[14] Vrije Univ Amsterdam, Med Ctr, Alzheimer Ctr, Neurosci Campus Amsterdam, Amsterdam, Netherlands
[15] Karolinska Inst, Dept Neurobiol Care Sci & Soc, Div Clin Geriatr, Stockholm, Sweden
[16] Univ Helsinki, HUS Med Imaging Ctr, Radiol, Helsinki, Finland
关键词
Cerebral small vessel disease; Convolutional neural network; Computed tomography; Machine learning; White matter lesions; THROMBOLYSIS; DISABILITY; LADIS; RISK; MRI; CT;
D O I
10.1007/s00234-020-02410-2
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can be automatically segmented from CT images using a convolutional neural network (CNN). The second aim was to compare CT segmentation with MRI segmentation. Methods The brain images from the Helsinki University Hospital clinical image archive were systematically screened to make CT-MRI image pairs. Selection criteria for the study were that both CT and MRI images were acquired within 6 weeks. In total, 147 image pairs were included. We used CNN to segment WML from CT images. Training and testing of CNN for CT was performed using 10-fold cross-validation, and the segmentation results were compared with the corresponding segmentations from MRI. Results A Pearson correlation of 0.94 was obtained between the automatic WML volumes of MRI and CT segmentations. The average Dice similarity index validating the overlap between CT and FLAIR segmentations was 0.68 for the Fazekas 3 group. Conclusion CNN-based segmentation of CT images may provide a means to evaluate the severity of WML and establish a link between CT WML patterns and the current standard MRI-based visual rating scale.
引用
收藏
页码:1257 / 1263
页数:7
相关论文
共 24 条
[1]   WHITE-MATTER LESIONS ON CT IN ALZHEIMER PATIENTS - RELATION TO CLINICAL SYMPTOMATOLOGY AND VASCULAR FACTORS [J].
BLENNOW, K ;
WALLIN, A ;
UHLEMANN, C ;
GOTTFRIES, CG .
ACTA NEUROLOGICA SCANDINAVICA, 1991, 83 (03) :187-193
[2]   Rapid Automated Quantification of Cerebral Leukoaraiosis on CT Images: A Multicenter Validation Study [J].
Chen, Liang ;
Jones, Anoma Lalani Carlton ;
Mair, Grant ;
Patel, Rajiv ;
Gontsarova, Anastasia ;
Ganesalingam, Jeban ;
Math, Nikhil ;
Dawson, Angela ;
Aweid, Basaam ;
Cohen, David ;
Mehta, Amrish ;
Wardlaw, Joanna ;
Rueckert, Daniel ;
Bentley, Paul .
RADIOLOGY, 2018, 288 (02) :573-581
[3]   White Matter Lesions Double the Risk of Post-Thrombolytic Intracerebral Hemorrhage [J].
Curtze, Sami ;
Haapaniemi, Elena ;
Melkas, Susanna ;
Mustanoja, Satu ;
Putaala, Jukka ;
Sairanen, Tiina ;
Sibolt, Gerli ;
Tiainen, Marjaana ;
Tatlisumak, Turgut ;
Strbian, Daniel .
STROKE, 2015, 46 (08) :2149-2155
[4]   Cerebral Computed Tomography-Graded White Matter Lesions Are Associated With Worse Outcome After Thrombolysis in Patients With Stroke [J].
Curtze, Sami ;
Melkas, Susanna ;
Sibolt, Gerli ;
Haapaniemi, Elena ;
Mustanoja, Satu ;
Putaala, Jukka ;
Sairanen, Tiina ;
Tiainen, Marjaana ;
Tatlisumak, Turgut ;
Strbian, Daniel .
STROKE, 2015, 46 (06) :1554-+
[5]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[6]   Major bleeding during anticoagulation after cerebral ischemia - Patterns and risk factors [J].
Gorter, JW .
NEUROLOGY, 1999, 53 (06) :1319-1327
[7]   White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks [J].
Guerrero, R. ;
Qin, C. ;
Oktay, O. ;
Bowles, C. ;
Chen, L. ;
Joules, R. ;
Wolz, R. ;
Valdes-Hernandez, M. C. ;
Dickie, D. A. ;
Wardlaw, J. ;
Rueckert, D. .
NEUROIMAGE-CLINICAL, 2018, 17 :918-934
[8]   Global Burden of Small Vessel Disease-Related Brain Changes on MRI Predicts Cognitive and Functional Decline [J].
Jokinen, Hanna ;
Koikkalainen, Juha ;
Laakso, Hanna M. ;
Melkas, Susanna ;
Nieminen, Tuomas ;
Brander, Antti ;
Korvenoja, Antti ;
Rueckert, Daniel ;
Barkhof, Frederik ;
Scheltens, Philip ;
Schmidt, Reinhold ;
Fazekas, Franz ;
Madureira, Sofia ;
Verdelho, Ana ;
Wallin, Anders ;
Wahlund, Lars-Olof ;
Waldemar, Gunhild ;
Chabriat, Hugues ;
Hennerici, Michael ;
O'Brien, John ;
Inzitari, Domenico ;
Lotjonen, Jyrki ;
Pantoni, Leonardo ;
Erkinjuntti, Timo .
STROKE, 2020, 51 (01) :170-178
[9]   Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J].
Kamnitsas, Konstantinos ;
Ledig, Christian ;
Newcombe, Virginia F. J. ;
Sirnpson, Joanna P. ;
Kane, Andrew D. ;
Menon, David K. ;
Rueckert, Daniel ;
Glocker, Ben .
MEDICAL IMAGE ANALYSIS, 2017, 36 :61-78
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90