CYCLOTOMIC NUMERICAL SEMIGROUPS

被引:12
作者
Ciolan, Emil-Alexandru [1 ]
Garcia-Sanchez, Pedro A. [2 ,3 ]
Moree, Pieter [4 ]
机构
[1] Univ Bonn, Regina Pacis Weg 3, D-53113 Bonn, Germany
[2] Univ Granada, IEMath GR, E-18071 Granada, Spain
[3] Univ Granada, Dept Algebra, E-18071 Granada, Spain
[4] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
numerical semigroups; cyclotomic polynomials; semigroup polynomials; cyclotomic numerical semigroups; cyclotomic exponents; polynomially related semigroups; MAXIMAL HEIGHT; DIVISORS; POLYNOMIALS; CODES;
D O I
10.1137/140989479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a numerical semigroup S, we let P-S(x) - (1 - x) Sigma(s is an element of S) x(s) be its semigroup polynomial. We study cyclotomic numerical semigroups; these are numerical semigroups S such that P-S(x) has all its roots in the unit disc. We conjecture that S is a cyclotomic numerical semigroup if and only if S is a complete intersection numerical semigroup and present some evidence for it. Aside from the notion of cyclotomic numerical semigroups we introduce the notion of cyclotomic exponents and polynomially related numerical semigroups. We derive some properties and give some applications of these new concepts.
引用
收藏
页码:650 / 668
页数:19
相关论文
共 30 条
[1]   Numerical semigroups: Ap,ry sets and Hilbert series [J].
Alfonsin, Jorge L. Ramirez ;
Rodseth, Oystein J. .
SEMIGROUP FORUM, 2009, 79 (02) :323-340
[2]  
[Anonymous], Numericalsgps: a GAP package on numerical semigroups
[3]  
Assi A., FROBENIUS VECTORS HI
[4]   On free resolutions of some semigroup rings [J].
Barucci, Valentina ;
Froberg, Ralf ;
Sahin, Mesut .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (06) :1107-1116
[5]   SEMIGROUPS OF INTEGERS AND APPLICATION TO BRANCHES [J].
BERTIN, J ;
CARBONNE, P .
JOURNAL OF ALGEBRA, 1977, 49 (01) :81-95
[6]  
BRADFORD RJ, 1989, LECT NOTES COMPUT SC, V358, P244
[7]   Sparse binary cyclotomic polynomials [J].
Bzdega, Bartlomiej .
JOURNAL OF NUMBER THEORY, 2012, 132 (03) :410-413
[8]   Monic polynomials in Z[x] with roots in the unit disc [J].
Damianou, PA .
AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (03) :253-257
[9]  
Decker A., 2013, SARAJEVO J MATH, V9, P3
[10]   On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators [J].
Delgado, Manuel ;
Farran, Jose I. ;
Garcia-Sanchez, Pedro A. ;
Llena, David .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) :282-295