K-classes of Brill-Noether Loci and a Determinantal Formula

被引:8
|
作者
Anderson, Dave [1 ]
Chen, Linda [2 ]
Tarasca, Nicola [3 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
[3] Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
基金
美国国家科学基金会;
关键词
DEGENERACY LOCI; GROBNER GEOMETRY; CURVES; POLYNOMIALS; PROOF;
D O I
10.1093/imrn/rnab025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Euler characteristic of the structure sheaf of the Brill-Noether locus of linear series with special vanishing at up to two marked points. When the Brill-Noether number rho is zero, we recover the Castelnuovo formula for the number of special linear series on a general curve; when rho = 1, we recover the formulas of Eisenbud-Harris, Pirola, and Chan-Martin-Pflueger-Teixidor for the arithmetic genus of a Brill-Noether curve of special divisors. These computations are obtained as applications of a new determinantal formula for the K-theory class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations and gives double versions of the flagged skew Grothendieck polynomials recently introduced by Matsumura. Our result extends the formula of Billey-Jockusch-Stanley expressing Schubert polynomials for 321-avoiding permutations as generating functions for flagged skew tableaux.
引用
收藏
页码:12653 / 12698
页数:46
相关论文
共 36 条
  • [11] A tropical proof of the Brill-Noether Theorem
    Cools, Filip
    Draisma, Jan
    Payne, Sam
    Robeva, Elina
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 759 - 776
  • [12] Algebraic and combinatorial Brill-Noether theory
    Caporaso, Lucia
    COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 69 - 85
  • [13] Brill-Noether theory for cyclic covers
    Schwarz, Irene
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (10) : 2420 - 2430
  • [14] Brill-Noether divisors for even genus
    Choi, Youngook
    Kim, Seonja
    Kim, Young Rock
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (08) : 1458 - 1462
  • [15] Brill-Noether with ramification at unassigned points
    Farkas, Gavril
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (10) : 1838 - 1843
  • [16] k-canonical divisors through Brill-Noether special points
    Gheorghita, Iulia
    Tarasca, Nicola
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (02) : 649 - 668
  • [17] A Note on Brill-Noether Existence for Graphs of Low Genus
    Atanasov, Stanislav
    Ranganathan, Dhruv
    MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (01) : 175 - 198
  • [18] Skeletons of Prym varieties and Brill-Noether theory
    Len, Yoav
    Ulirsch, Martin
    ALGEBRA & NUMBER THEORY, 2021, 15 (03) : 785 - 820
  • [19] Stability of normal bundles of Brill-Noether curves
    Coskun, Izzet
    Smith, Geoffrey
    MATHEMATISCHE ANNALEN, 2025, 391 (04) : 4997 - 5032
  • [20] Remarks on Brill-Noether divisors and Hilbert schemes
    Choi, Youngook
    Kim, Seonja
    Kim, Young Rock
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (02) : 377 - 384