A GRONWALL INEQUALITY AND THE CAUCHY-TYPE PROBLEM BY MEANS OF ψ-HILFER OPERATOR

被引:118
作者
Da Costa Sousa, Jose Vanterler [1 ]
De Oliveira, Edmundo Capelas [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Inst Math Stat & Sci Computat, Dept Appl Math, Rua Sergio Buarque Holanda 651, BR-13083859 Campinas, SP, Brazil
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2019年 / 11卷 / 01期
关键词
psi-Hilfer fractional derivative; Cauchy-type problem; existence and uniqueness; continuous dependence; generalized Gronwall inequality; UNIQUENESS; EXISTENCE; STABILITY;
D O I
10.7153/dea-2019-11-02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a generalized Gronwall inequality through the fractional integral with respect to another function. The Cauchy-type problem for a nonlinear differential equation involving the psi-Hilfer fractional derivative and the existence and uniqueness of solutions are discussed. Finally, through generalized Gronwall inequality, we prove the continuous dependence of data on the Cauchy-type problem.
引用
收藏
页码:87 / 106
页数:20
相关论文
共 31 条
  • [1] GRONWALL INEQUALITY FOR A GENERAL CAPUTO FRACTIONAL OPERATOR
    Almeida, Ricardo
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 1089 - 1105
  • [2] A Caputo fractional derivative of a function with respect to another function
    Almeida, Ricardo
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 : 460 - 481
  • [3] [Anonymous], 2012, FRACTIONAL DYNAMICS
  • [4] [Anonymous], 2001, Classics in Applied Mathematics
  • [5] [Anonymous], N HOLLAND MATH STUDI
  • [6] On Gronwall's Type Integral Inequalities with Singular Kernels
    Ashyraliyev, Maksat
    [J]. FILOMAT, 2017, 31 (04) : 1041 - 1049
  • [7] Ulam-Hyers-Rassias Stability for a Class of Fractional Integro-Differential Equations
    Capelas de Oliveira, E.
    Sousa, J. Vanterler da C.
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (03)
  • [8] Courant Richard., 2011, Differential and integral calculus, V2
  • [9] Dhaigude D., 2017, ARXIV170402174
  • [10] Dragomir S. S., 2003, RGMIA Monographs