Invariant subspaces for commuting contractions

被引:0
|
作者
Eschmeier, J [1 ]
机构
[1] Univ Saarland, Fachbereich Chem, D-66041 Saarbrucken, Germany
关键词
invariant subspaces; commuting contractions; Harte spectrum; dual operator algebras; Henkin measures;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is Shown that each finite commuting system of contractions which possesses a unitary dilation and for which the Harte spectrum is dominating in the open unit polydisc possesses non-trivial joint invariant subspaces. Since by a well-known result of Ando each commuting pair of contractions admits a unitary dilation, we obtain in particular that each commuting pair of contractions with dominating Harte spectrum in the bidisc possesses non-trivial joint invariant subspaces.
引用
收藏
页码:413 / 443
页数:31
相关论文
共 50 条
  • [21] CHARACTERIZATION OF INVARIANT SUBSPACES IN THE POLYDISC
    Maji, Amit
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    Sankar, T. R.
    JOURNAL OF OPERATOR THEORY, 2019, 82 (02) : 445 - 468
  • [22] Polycyclic codes as invariant subspaces
    Shi, Minjia
    Li, Xiaoxiao
    Sepasdar, Zahra
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
  • [23] A Bifurcation Lemma for Invariant Subspaces
    Neuberger, John M.
    Sieben, Nandor
    Swift, James W.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (02): : 1610 - 1635
  • [24] INVARIANT SUBSPACES OF ANALYTIC PERTURBATIONS
    Das, S.
    Sarkar, J.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, 35 (04) : 677 - 695
  • [25] Invariant subspaces of composition operators
    Mahvidi, A
    JOURNAL OF OPERATOR THEORY, 2001, 46 (03) : 453 - 476
  • [26] The invariant subspaces of S ⊕ S
    Timotin, Dan
    CONCRETE OPERATORS, 2020, 7 (01): : 116 - 123
  • [27] Constacyclic codes as invariant subspaces
    Radkova, D.
    Van Zanten, A. J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (2-3) : 855 - 864
  • [28] INVARIANT SUBSPACES OF COMPOSITION OPERATORS
    Matache, Valentin
    JOURNAL OF OPERATOR THEORY, 2015, 73 (01) : 243 - 264
  • [29] On invariant subspaces of operators in the class θ
    Kim, Jaewoong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (02) : 562 - 568
  • [30] Invariant subspaces for tridiagonal operators
    Grivaux, S
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (08): : 681 - 691