Kernel Parameter Optimization for KFDA Based on the Maximum Margin Criterion

被引:0
作者
Zhao, Yue
Ma, Jinwen [1 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Informat Sci, Beijing 100871, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2014 | 2014年 / 8866卷
关键词
Kernel parameter optimization; Maximum margin criterion; Feature extraction; Kernel Fisher discriminant analysis (KFDA); Affinity matrix;
D O I
10.1007/978-3-319-12436-0_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel parameters optimization is one of the most challenging problems on kernel Fisher discriminant analysis (KFDA). In this paper, a simple and effective KFDA kernel parameters optimization criterion is proposed on the basis of the maximum margin criterion (MMC) that maximize the distances between any two classes. Actually, this MMC-based criterion is applied to the kernel parameters optimization on KFDA and KFDA with Locally Linear Embedding affinity matrix (KFDA-LLE). It is demonstrated by the experiments on six real-world multiclass datasets that, in comparison with two other criteria, our MMC-based criterion can detect the optimal KFDA kernel parameters more accurately in the cases of both RBF kernel and polynomial kernel.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 14 条
[1]  
[Anonymous], INTRO STAT PATTERN R
[2]   Generalized discriminant analysis using a kernel approach [J].
Baudat, G ;
Anouar, FE .
NEURAL COMPUTATION, 2000, 12 (10) :2385-2404
[3]   ON SOME INVARIANT CRITERIA FOR GROUPING DATA [J].
FRIEDMAN, HP ;
RUBIN, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1967, 62 (320) :1159-&
[4]  
Hartigan J.A, 1975, CLUSTERING ALGORITHM
[5]  
Huang J, 2008, IEEE IJCNN, P3840
[6]   Efficient and robust feature extraction by maximum margin criterion [J].
Li, HF ;
Jiang, T ;
Zhang, KS .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (01) :157-165
[7]   Learning kernel parameters for kernel Fisher discriminant analysis [J].
Liu, Jing ;
Zhao, Feng ;
Liu, Yi .
PATTERN RECOGNITION LETTERS, 2013, 34 (09) :1026-1031
[8]   AN EXAMINATION OF PROCEDURES FOR DETERMINING THE NUMBER OF CLUSTERS IN A DATA SET [J].
MILLIGAN, GW ;
COOPER, MC .
PSYCHOMETRIKA, 1985, 50 (02) :159-179
[9]   An introduction to kernel-based learning algorithms [J].
Müller, KR ;
Mika, S ;
Rätsch, G ;
Tsuda, K ;
Schölkopf, B .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (02) :181-201
[10]   AN AGGLOMERATIVE METHOD FOR CLASSIFICATION OF PLANT COMMUNITIES [J].
ORLOCI, L .
JOURNAL OF ECOLOGY, 1967, 55 (01) :193-&