Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense

被引:144
作者
Bunesova, Vera [1 ,2 ]
Lacroix, Christophe [1 ]
Schwab, Clarissa [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Food Nutr & Hlth, Lab Food Biotechnol, Schmelzbergstr 7, Zurich, Switzerland
[2] Czech Univ Life Sci, Fac Agrobiol Food & Nat Resources, Dept Microbiol Nutr & Dietet, Prague, Czech Republic
关键词
Bifidobacterium; HMOs; fucosyllactose; L-fucose; 1,2 propanediol; SUBSP INFANTIS; HUMAN-MILK; ESCHERICHIA-COLI; BIFIDUM PRL2010; GUT MICROBIOTA; L-RHAMNOSE; OLIGOSACCHARIDES; METABOLISM; STRAINS; FERMENTATION;
D O I
10.1186/s12866-016-0867-4
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Human milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including alpha-fucosidases, sialidases, and beta-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool. The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2'-fucosyllactose (2'-FL), 3'-fucosyllactose (3'-FL), 3'-sialyl-lactose (3'-SL), 6'-sialyl-lactose (6'-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison. Results: Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2'-FL and 3'-FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol(1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates. Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four alpha-fucosidases with 95-99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one a-fucosidase, respectively. The two a-fucosidases of B. longum subsp. suis were 78-80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense alpha-fucosidases (95-99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates. Conclusion: Here we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 46 条
[1]   The RAST server: Rapid annotations using subsystems technology [J].
Aziz, Ramy K. ;
Bartels, Daniela ;
Best, Aaron A. ;
DeJongh, Matthew ;
Disz, Terrence ;
Edwards, Robert A. ;
Formsma, Kevin ;
Gerdes, Svetlana ;
Glass, Elizabeth M. ;
Kubal, Michael ;
Meyer, Folker ;
Olsen, Gary J. ;
Olson, Robert ;
Osterman, Andrei L. ;
Overbeek, Ross A. ;
McNeil, Leslie K. ;
Paarmann, Daniel ;
Paczian, Tobias ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Reich, Claudia ;
Stevens, Rick ;
Vassieva, Olga ;
Vonstein, Veronika ;
Wilke, Andreas ;
Zagnitko, Olga .
BMC GENOMICS, 2008, 9 (1)
[2]   An L-Fucose Operon in the Probiotic Lactobacillus rhamnosus GG Is Involved in Adaptation to Gastrointestinal Conditions [J].
Becerra, Jimmy E. ;
Yebra, Mara J. ;
Monedero, Vicente .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (11) :3880-3888
[3]   METABOLISM OF L-FUCOSE AND L-RHAMNOSE IN ESCHERICHIA-COLI - DIFFERENCES IN INDUCTION OF PROPANEDIOL OXIDOREDUCTASE [J].
BORONAT, A ;
AGUILAR, J .
JOURNAL OF BACTERIOLOGY, 1981, 147 (01) :181-185
[4]  
Bottacini F, 2014, MICROBIOL CELL FACT, V13, P1024
[5]   Comparative genomics of the genus Bifidobacterium [J].
Bottacini, Francesca ;
Medini, Duccio ;
Pavesi, Angelo ;
Turroni, Francesca ;
Foroni, Elena ;
Riley, David ;
Giubellini, Vanessa ;
Tettelin, Herve ;
van Sinderen, Douwe ;
Ventura, Marco .
MICROBIOLOGY-SGM, 2010, 156 :3243-3254
[6]   EVOLUTION OF L-1,2-PROPANEDIOL CATABOLISM IN ESCHERICHIA-COLI BY RECRUITMENT OF ENZYMES FOR L-FUCOSE AND L-LACTATE METABOLISM [J].
COCKS, GT ;
AGUILAR, J ;
LIN, ECC .
JOURNAL OF BACTERIOLOGY, 1974, 118 (01) :83-88
[7]   Utilisation of Mucin Glycans by the Human Gut Symbiont Ruminococcus gnavus Is Strain-Dependent [J].
Crost, Emmanuelle H. ;
Tailford, Louise E. ;
Le Gall, Gwenaelle ;
Fons, Michel ;
Henrissat, Bernard ;
Juge, Nathalie .
PLOS ONE, 2013, 8 (10)
[8]   PATHWAY OF GLUCOSE FERMENTATION IN RELATION TO TAXONOMY OF BIFIDOBACTERIA [J].
DEVRIES, W ;
STOUTHAMER, AH .
JOURNAL OF BACTERIOLOGY, 1967, 93 (02) :574-+
[9]   FERMENTATION OF GLUCOSE LACTOSE GALACTOSE MANNITOL AND XYLOSE BY BIFIDOBACTERIA [J].
DEVRIES, W ;
STOUTHAMER, AH .
JOURNAL OF BACTERIOLOGY, 1968, 96 (02) :472-+
[10]   Genomic Characterization and Transcriptional Studies of the Starch-Utilizing Strain Bifidobacterium adolescentis 22L [J].
Duranti, Sabrina ;
Turroni, Francesca ;
Lugli, Gabriele Andrea ;
Milani, Christian ;
Viappiani, Alice ;
Mangifesta, Marta ;
Gioiosa, Laura ;
Palanza, Paola ;
van Sinderen, Douwe ;
Ventura, Marco .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (19) :6080-6090