Slow-light, band-edge waveguides for tunable time delays

被引:196
作者
Povinelli, ML
Johnson, SG
Joannopoulos, JD
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
来源
OPTICS EXPRESS | 2005年 / 13卷 / 18期
基金
欧盟地平线“2020”;
关键词
D O I
10.1364/OPEX.13.007145
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose the use of slow-light, band-edge waveguides for compact, integrated, tunable optical time delays. We show that slow group velocities at the photonic band edge give rise to large changes in time delay for small changes in refractive index, thereby shrinking device size. Figures of merit are introduced to quantify the sensitivity, as well as the accompanying signal degradation due to dispersion. It is shown that exact calculations of the figures of merit for a realistic, three-dimensional grating structure are well predicted by a simple quadratic-band model, simplifying device design. We present adiabatic taper designs that attain < 0.1% reflection in short lengths of 10 to 20 times the grating period. We show further that cascading two gratings compensates for signal dispersion and gives rise to a constant tunable time delay across bandwidths greater than 100 GHz. Given typical loss values for silicon-on-insulator waveguides, we estimate that gratings can be designed to exhibit tunable delays in the picosecond range using current fabrication technology. (c) 2005 Optical Society of America
引用
收藏
页码:7145 / 7159
页数:15
相关论文
共 35 条
[1]   Fine-tuned high-Q photonic-crystal nanocavity [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
OPTICS EXPRESS, 2005, 13 (04) :1202-1214
[2]   Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays [J].
Altug, H ;
Vuckovic, J .
APPLIED PHYSICS LETTERS, 2005, 86 (11) :1-3
[3]   Two-dimensional coupled photonic crystal resonator arrays [J].
Altug, H ;
Vuckovic, J .
APPLIED PHYSICS LETTERS, 2004, 84 (02) :161-163
[4]   Photonic-bandgap microcavities in optical waveguides [J].
Foresi, JS ;
Villeneuve, PR ;
Ferrera, J ;
Thoen, ER ;
Steinmeyer, G ;
Fan, S ;
Joannopoulos, JD ;
Kimerling, LC ;
Smith, HI ;
Ippen, EP .
NATURE, 1997, 390 (6656) :143-145
[5]   Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides [J].
Grillot, F ;
Vivien, L ;
Laval, S ;
Pascal, D ;
Cassan, E .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (07) :1661-1663
[6]   Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography [J].
Hastings, JT ;
Lim, MH ;
Goodberlet, JG ;
Smith, HI .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (06) :2753-2757
[7]   Extrinsic optical scattering loss in photonic crystal waveguides: Role of fabrication disorder and photon group velocity [J].
Hughes, S ;
Ramunno, L ;
Young, JF ;
Sipe, JE .
PHYSICAL REVIEW LETTERS, 2005, 94 (03)
[8]   THE TEMPERATURE-DEPENDENCE OF THE REFRACTIVE-INDEX OF SILICON AT ELEVATED-TEMPERATURES AT SEVERAL LASER WAVELENGTHS [J].
JELLISON, GE ;
BURKE, HH .
JOURNAL OF APPLIED PHYSICS, 1986, 60 (02) :841-843
[9]  
Joannopoulos J. D., 2008, Molding the flow of light
[10]   Roughness losses and volume-current methods in photonic-crystal waveguides [J].
Johnson, SG ;
Povinelli, ML ;
Soljacic, M ;
Karalis, A ;
Jacobs, S ;
Joannopoulos, JD .
APPLIED PHYSICS B-LASERS AND OPTICS, 2005, 81 (2-3) :283-293