Quantum anomalous Hall effect in atomic crystal layers from in-plane magnetization

被引:63
作者
Ren, Yafei [1 ,2 ,3 ,4 ]
Zeng, Junjie [1 ,2 ,3 ,4 ]
Deng, Xinzhou [1 ,2 ,3 ,4 ]
Yang, Fei [5 ]
Pan, Hui [5 ]
Qiao, Zhenhua [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, ICQD, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[5] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
STATE; REALIZATION; SI(111);
D O I
10.1103/PhysRevB.94.085411
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically demonstrate that with in-plane magnetization, the quantum anomalous Hall effect (QAHE) can be realized in two-dimensional atomic crystal layers with preserved inversion symmetry but broken out-of-plane mirror reflection symmetry. By taking the honeycomb lattice system as an example, we find that the low-buckled structure satisfying the symmetry criteria is crucial to induce QAHE. The topologically nontrivial bulk gap carrying a Chern number of C = +/- 1 opens in the vicinity of the saddle points M, where the band dispersion exhibits strong anisotropy. We further show that the QAHE with electrically tunable Chern number can be achieved in Bernal-stacked multilayer systems, and the applied interlayer potential differences can dramatically decrease the critical magnetization to make the QAHE experimentally feasible.
引用
收藏
页数:5
相关论文
共 31 条
[1]  
[Anonymous], ARXIV150901975
[2]  
Chang CZ, 2015, NAT MATER, V14, P473, DOI [10.1038/NMAT4204, 10.1038/nmat4204]
[3]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[4]  
Checkelsky JG, 2014, NAT PHYS, V10, P731, DOI [10.1038/nphys3053, 10.1038/NPHYS3053]
[5]   Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism [J].
Chen, Hua ;
Niu, Qian ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2014, 112 (01)
[6]   Delocalized Surface State in Epitaxial Si(111) Film with Spontaneous √3 x √3 Superstructure [J].
Chen, Jian ;
Du, Yi ;
Li, Zhi ;
Li, Wenbin ;
Feng, Baojie ;
Qiu, Jinlan ;
Cheng, Peng ;
Dou, Shi Xue ;
Chen, Lan ;
Wu, Kehui .
SCIENTIFIC REPORTS, 2015, 5
[7]   Graphene in proximity to magnetic insulating LaMnO3 [J].
Cheng, Guanghui ;
Wei, Laiming ;
Cheng, Long ;
Liang, Haixing ;
Zhang, Xiaoqiang ;
Li, Hui ;
Yu, Guolin ;
Zeng, Changgan .
APPLIED PHYSICS LETTERS, 2014, 105 (13)
[8]   Spin valleytronics in silicene: Quantum spin Hall-quantum anomalous Hall insulators and single-valley semimetals [J].
Ezawa, Motohiko .
PHYSICAL REVIEW B, 2013, 87 (15)
[9]   Valley-Polarized Metals and Quantum Anomalous Hall Effect in Silicene [J].
Ezawa, Motohiko .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[10]   Bulk topological invariants in noninteracting point group symmetric insulators [J].
Fang, Chen ;
Gilbert, Matthew J. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2012, 86 (11)