Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems

被引:2
作者
Lu, JG [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
来源
CHINESE PHYSICS | 2005年 / 14卷 / 08期
关键词
chaos; synchronization; Genesio-Tesi system; fractional-order system; fractional calculus;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate numerically the chaotic behaviours in the fractional-order Genesio-Tesi system. We find that chaos exists in the fractional-order Genesio-Tesi system with order less than 3. The lowest order we find to have chaos is 2.4 in this fractional-order Genesio-Tesi system. We propose a drive-response synchronization method for synchronizing the fractional-order chaotic Genesio-Tesi systems only using a scalar drive signal. This synchronization approach, based on stability theory of fractional-order systems, is simple and theoretically rigorous. It does not require the computation of the conditional Lyapunov exponents. Simulation results are used to visualize and illustrate the effectiveness of the proposed synchronization method.
引用
收藏
页码:1517 / 1521
页数:5
相关论文
共 27 条
[1]   Fractional-order Wien-bridge oscillator [J].
Ahmad, W ;
El-khazali, R ;
Elwakil, AS .
ELECTRONICS LETTERS, 2001, 37 (18) :1110-1112
[2]   On nonlinear control design for autonomous chaotic systems of integer and fractional orders [J].
Ahmad, WM ;
Harb, AM .
CHAOS SOLITONS & FRACTALS, 2003, 18 (04) :693-701
[3]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[4]   Chaotic behavior in noninteger-order cellular neural networks [J].
Arena, P ;
Fortuna, L ;
Porto, D .
PHYSICAL REVIEW E, 2000, 61 (01) :776-781
[5]   Bifurcation and chaos in noninteger order cellular neural networks [J].
Arena, P ;
Caponetto, R ;
Fortuna, L ;
Porto, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1527-1539
[6]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[7]   FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION [J].
CHAREF, A ;
SUN, HH ;
TSAO, YY ;
ONARAL, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1465-1470
[8]  
CHEN G, 1987, CHAOS CONTROL SYNCHR
[9]  
Chen YQ, 2002, IEEE T CIRCUITS-I, V49, P363, DOI 10.1109/81.989172
[10]   HARMONIC-BALANCE METHODS FOR THE ANALYSIS OF CHAOTIC DYNAMICS IN NONLINEAR-SYSTEMS [J].
GENESIO, R ;
TESI, A .
AUTOMATICA, 1992, 28 (03) :531-548