Electronic States with Nontrivial Topology in Dirac Materials

被引:0
作者
Turkevich, R. V. [1 ,2 ]
Perov, A. A. [2 ]
Protogenov, A. P. [1 ]
Chulkov, E. V. [3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia
[3] DIPC, San Sebastian 20018, Basque Country, Spain
[4] Univ Basque Country, CFM MPC, Ctr Fis Mat, Dept Fis Mat, San Sebastian 20080, Spain
[5] Univ Basque Country, CSIC, Ctr Mixto, San Sebastian 20080, Spain
关键词
TRANSPORT; VARIABLES; CHAIN;
D O I
10.1134/S0021364017150115
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theoretical studies of phase states with a linear dispersion of the spectrum of low-energy electron excitations have been reviewed. Some main properties and methods of experimental study of these states in so-called Dirac materials have been discussed in detail. The results of modern studies of symmetry-protected electronic states with nontrivial topology have been reported. Combination of approaches based on geometry with homotopic topology methods and results of condensed matter physics makes it possible to clarify new features of topological insulators, as well as Dirac and Weyl semimetals.
引用
收藏
页码:188 / 198
页数:11
相关论文
共 50 条
[31]   Nontrivial topological electronic structures in a single Bi(111) bilayer on different substrates: A first-principles study [J].
Huang, Zhi-Quan ;
Chuang, Feng-Chuan ;
Hsu, Chia-Hsiu ;
Liu, Yu-Tzu ;
Chang, Hua-Rong ;
Lin, Hsin ;
Bansil, Arun .
PHYSICAL REVIEW B, 2013, 88 (16)
[32]   Tunable phononic bandgap materials designed via topology optimization [J].
Dalklint, Anna ;
Wallin, Mathias ;
Bertoldi, Katia ;
Tortorelli, Daniel .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2022, 163
[33]   A mass constraint formulation for structural topology optimization with multiphase materials [J].
Gao, Tong ;
Zhang, Weihong .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 88 (08) :774-796
[34]   Full consideration of acoustic phonon scatterings in two-dimensional Dirac materials [J].
Van Nguyen, Khoe ;
Chang, Yia-Chung .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (07) :3999-4009
[35]   Spin Nernst effect and intrinsic magnetization in two-dimensional Dirac materials [J].
Gusynin, V. P. ;
Sharapov, S. G. ;
Varlamov, A. A. .
LOW TEMPERATURE PHYSICS, 2015, 41 (05) :342-352
[36]   Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor [J].
Yoshimi, R. ;
Tsukazaki, A. ;
Kikutake, K. ;
Checkelsky, J. G. ;
Takahashi, K. S. ;
Kawasaki, M. ;
Tokura, Y. .
NATURE MATERIALS, 2014, 13 (03) :254-258
[37]   Universal Properties of Materials with the Dirac Dispersion Relation of Low-Energy Excitations [J].
Protogenov, A. P. ;
Chulkov, E. V. .
SEMICONDUCTORS, 2015, 49 (12) :1550-1556
[38]   Universal Conductance Fluctuations in Dirac Materials in the Presence of Long-range Disorder [J].
Rossi, E. ;
Bardarson, J. H. ;
Fuhrer, M. S. ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2012, 109 (09)
[39]   Structural Chirality and Electronic Chirality in Quantum Materials [J].
Yan, Binghai .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2024, 54 :97-115
[40]   Interplay of Electronic Orders in Topological Quantum Materials [J].
Gruber, Christian Stefan ;
Abdel-Hafiez, Mahmoud .
ACS MATERIALS AU, 2024, :72-87