Rapid fabrication of porous silicon/carbon microtube composites as anode materials for lithium-ion batteries

被引:9
作者
Wang, Shuxian [1 ]
Huang, Chunlai [1 ,2 ]
Wang, Lei [1 ]
Sun, Wei [3 ]
Yang, Deren [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Jiangsu GCL Silicon Mat Technol Dev Co Ltd, Jiangsu Key Lab Silicon Based Elect Mat, Xuzhou 221000, Jiangsu, Peoples R China
[3] Bengbu Inst Prod Qual Supervis & Inspect Res, Bengbu 233000, Anhui, Peoples R China
来源
RSC ADVANCES | 2018年 / 8卷 / 71期
基金
美国国家科学基金会;
关键词
SI; STORAGE; ELECTRODE; RAMAN; NANOPARTICLES; SPECTROSCOPY;
D O I
10.1039/c8ra07483f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, we present a simple and rapid method to synthesize porous silicon/carbon microtube composites (PoSi/CMTs) by adopting a unique configuration of acid etching solution. The CMTs can act as both conductive agent and buffer for Si volume change during the charge and discharge process. The highly reversible capacity and excellent rate capability can be ascribed to the structure, where porous silicon powders are wrapped by a network of interwoven carbon microtubes. The composites show specific capacities of more than 1712mA h g(-1) at a current density of 100 mA g(-1), 1566 mA h g(-1) at 200 mA g(-1), 1407 mA h g(-1) at 400 mA g(-1), 1177 mA h g(-1) at 800 mA g(-1), 1107 mA h g(-1) at 1000 mA g(-1), 798 mA hg(-1) at 2000 mA g(-1), and 581 mA h g(-1) at 3000 mA g(-1) and maintain a value of 1127 mA h g(-1) after 100 cycles at a current density of 200 mA g(-1). Electrochemical impedance spectroscopy (EIS) measurements prove that charge transfer resistance of PoSi/CMT composites is smaller than that of pure PoSi. In this study, we propose a quick, economical and feasible method to prepare silicon-based anode materials for lithium-ion batteries.
引用
收藏
页码:41101 / 41108
页数:8
相关论文
共 40 条
[1]   A galvanic replacement-based Cu2O self-templating strategy for the synthesis and application of Cu2O-Ag heterostructures and monometallic (Ag) and bimetallic (Au-Ag) hollow mesocages [J].
Bakthavatsalam, Rangarajan ;
Kundu, Janardan .
CRYSTENGCOMM, 2017, 19 (12) :1669-1679
[2]   Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy [J].
Bonse, J ;
Brzezinka, KW ;
Meixner, AJ .
APPLIED SURFACE SCIENCE, 2004, 221 (1-4) :215-230
[3]  
Dearnaley G., 1980, Phys. Bull, V31, P359
[4]   Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries [J].
Feng, Jinkui ;
Zhang, Zhen ;
Ci, Lijie ;
Zhai, Wei ;
Ai, Qing ;
Xiong, Shenglin .
JOURNAL OF POWER SOURCES, 2015, 287 :177-183
[5]  
Fievet F., 1998, J MATER CHEM, V3, P627
[6]   Review of porous silicon preparation and its application for lithium-ion battery anodes [J].
Ge, M. ;
Fang, X. ;
Rong, J. ;
Zhou, C. .
NANOTECHNOLOGY, 2013, 24 (42)
[7]   Formation of single-walled bimetallic coinage alloy nanotubes in confined carbon nanotubes: molecular dynamics simulations [J].
Han, Yang ;
Zhou, Jian ;
Dong, Jinming ;
Yoshiyuki, Kawazoe .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (40) :17171-17178
[8]   A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries [J].
He, Yu-Shi ;
Gao, Pengfei ;
Chen, Jun ;
Yang, Xiaowei ;
Liao, Xiao-Zhen ;
Yang, Jun ;
Ma, Zi-Feng .
RSC ADVANCES, 2011, 1 (06) :958-960
[9]   Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies [J].
Hu, Yuhai ;
Sun, Xueliang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10712-10738
[10]   Core-Shell Structured Silicon Nanoparticles@TiO2-x/Carbon Mesoporous Microfiber Composite as a Safe and High-Performance Lithium-Ion Battery Anode [J].
Jeong, Goojin ;
Kim, Jae-Geun ;
Park, Min-Sik ;
Seo, Minsu ;
Hwang, Soo Min ;
Kim, Young-Ugk ;
Kim, Young-Jun ;
Kim, Jung Ho ;
Dou, Shi Xue .
ACS NANO, 2014, 8 (03) :2977-2985