Convolutional Neural Networks for Multimodal Remote Sensing Data Classification

被引:379
作者
Wu, Xin [1 ,2 ]
Hong, Danfeng [3 ]
Chanussot, Jocelyn [4 ,5 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[4] Univ Grenoble Alpes, Grenoble Inst Technol, Grenoble INP, LJK,INRJA,CNRS, F-38000 Grenoble, France
[5] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Laser radar; Synthetic aperture radar; Task analysis; Convolutional neural networks; Hyperspectral imaging; Network architecture; Classification; convolutional neural networks (CNNs); cross-channel; hyperspectral (HS); light detection and ranging (LiDAR); multimodal; reconstruction; remote sensing (RS); synthetic aperture radar (SAR); LAND-COVER CLASSIFICATION; LIDAR DATA; FUSION; FRAMEWORK; IMAGES;
D O I
10.1109/TGRS.2021.3124913
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, enormous research has been made to improve the classification performance of single-modal remote sensing (RS) data. However, with the ever-growing availability of RS data acquired from satellite or airborne platforms, simultaneous processing and analysis of multimodal RS data pose a new challenge to researchers in the RS community. To this end, we propose a deep-learning-based new framework for multimodal RS data classification, where convolutional neural networks (CNNs) are taken as a backbone with an advanced cross-channel reconstruction module, called CCR-Net. As the name suggests, CCR-Net learns more compact fusion representations of different RS data sources by the means of the reconstruction strategy across modalities that can mutually exchange information in a more effective way. Extensive experiments conducted on two multimodal RS datasets, including hyperspectral (HS) and light detection and ranging (LiDAR) data, i.e., the Houston2013 dataset, and HS and synthetic aperture radar (SAR) data, i.e., the Berlin dataset, demonstrate the effectiveness and superiority of the proposed CCR-Net in comparison with several state-of-the-art multimodal RS data classification methods. The codes will be openly and freely available at https://github.com/danfenghong/IEEE_TGRS_CCR-Net for the sake of reproducibility.
引用
收藏
页数:10
相关论文
共 48 条
[11]   Multimodal GANs: Toward Crossmodal HyperspectralMultispectral Image Segmentation [J].
Hong, Danfeng ;
Yao, Jing ;
Meng, Deyu ;
Xu, Zongben ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06) :5103-5113
[12]   Graph Convolutional Networks for Hyperspectral Image Classification [J].
Hong, Danfeng ;
Gao, Lianru ;
Yao, Jing ;
Zhang, Bing ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07) :5966-5978
[13]   Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model [J].
Hong, Danfeng ;
Hu, Jingliang ;
Yao, Jing ;
Chanussot, Jocelyn ;
Zhu, Xiao Xiang .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 :68-80
[14]   Interpretable Hyperspectral Artificial Intelligence: When nonconvex modeling meets hyperspectral remote sensing [J].
Hong, Danfeng ;
He, Wei ;
Yokoya, Naoto ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Liangpei ;
Chanussot, Jocelyn ;
Zhu, Xiaoxiang .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (02) :52-87
[15]   Graph-Induced Aligned Learning on Subspaces for Hyperspectral and Multispectral Data [J].
Hong, Danfeng ;
Kang, Jian ;
Yokoya, Naoto ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05) :4407-4418
[16]   Deep EncoderDecoder Networks for Classification of Hyperspectral and LiDAR Data [J].
Hong, Danfeng ;
Gao, Lianru ;
Hang, Renlong ;
Zhang, Bing ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[17]   More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification [J].
Hong, Danfeng ;
Gao, Lianru ;
Yokoya, Naoto ;
Yao, Jing ;
Chanussot, Jocelyn ;
Du, Qian ;
Zhang, Bing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05) :4340-4354
[18]   X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data [J].
Hong, Danfeng ;
Yokoya, Naoto ;
Xia, Gui-Song ;
Chanussot, Jocelyn ;
Zhu, Xiao Xiang .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 167 :12-23
[19]   Learning-Shared Cross-Modality Representation Using Multispectral-LiDAR and Hyperspectral Data [J].
Hong, Danfeng ;
Chanussot, Jocelyn ;
Yokoya, Naoto ;
Kang, Jian ;
Zhu, Xiao Xiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) :1470-1474
[20]   Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification [J].
Hong, Danfeng ;
Wu, Xin ;
Ghamisi, Pedram ;
Chanussot, Jocelyn ;
Yokoya, Naoto ;
Zhu, Xiao Xiang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (06) :3791-3808