RANDOM FORESTS ON HIERARCHICAL MULTI-SCALE SUPERVOXELS FOR LIVER TUMOR SEGMENTATION IN DYNAMIC CONTRAST-ENHANCED CT SCANS

被引:8
作者
Conze, P. -H. [1 ]
Noblet, V. [1 ]
Rousseau, F. [2 ]
Heitz, F. [1 ]
Memeo, R. [3 ]
Pessaux, P. [3 ]
机构
[1] Univ Strasbourg, CNRS, FMTS, ICube, Strasbourg, France
[2] INSERM, LATIM, Telecom Bretagne, Inst Mines Telecom, Brest, France
[3] Inst Hosp Univ Strasbourg, Strasbourg, France
来源
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2016年
关键词
liver tumor segmentation; random forest; supervoxels; hierarchical multi-scale tree; spatial adaptivity; DECISION FORESTS;
D O I
10.1109/ISBI.2016.7493296
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper addresses multi-label tissue classification in the context of liver tumor segmentation for patients with hepatocellular carcinoma (HCC). Covering such issue in an interactive perspective through supervoxel-based random forest (RF) requires an adaptive data sampling scheme to deal with multiple spatial extents and appearance heterogeneity. We propose a simple and efficient strategy combining standard RF and hierarchical multi-scale tree resulting from recursive 3D SLIC supervoxel decomposition. By concatenating features across the hierarchical multi-scale tree to describe leaf supervoxels, we enable RF to automatically infer the most informative scales discriminating tissues based on their intrinsic properties. Our method does not require any explicit rules on how to combine the different scales. Quantitative assessment on expert ground truth annotations demonstrates improved results compared to standard single-scale strategies for HCC tumor segmentation in dynamic contrast-enhanced CT scans.
引用
收藏
页码:416 / 419
页数:4
相关论文
共 11 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Bauer S, 2011, LECT NOTES COMPUT SC, V6893, P354, DOI 10.1007/978-3-642-23626-6_44
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Conze Pierre-Henri, 2015, Machine Learning in Medical Imaging. 6th International Workshop, MLMI 2015, held in conjunction with MICCAI 2015. Proceedings: LNCS 9352, P212, DOI 10.1007/978-3-319-24888-2_26
[5]  
Geremia E, 2013, I S BIOMED IMAGING, P1344
[6]  
Montillo A, 2011, LECT NOTES COMPUT SC, V6801, P184, DOI 10.1007/978-3-642-22092-0_16
[7]   Scale-Adaptive Forest Training via an Efficient Feature Sampling Scheme [J].
Peter, Loic ;
Pauly, Olivier ;
Chatelain, Pierre ;
Mateus, Diana ;
Navab, Nassir .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 :637-644
[8]  
Ronot M., 2014, BEST PRACTICE RES CL, V28
[9]   Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation [J].
Warfield, SK ;
Zou, KH ;
Wells, WM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (07) :903-921
[10]   Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features [J].
Wu, Wei ;
Chen, Albert Y. C. ;
Zhao, Liang ;
Corso, Jason J. .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (02) :241-253