Fokker-Planck equation with velocity-dependent coefficients: Application to dusty plasmas and active particles

被引:8
作者
Trigger, SA [1 ]
Ebeling, W
Ignatov, AM
Tkachenko, IM
机构
[1] Associated Inst High Temp, Moscow 127412, Russia
[2] Humboldt Univ, D-10115 Berlin, Germany
[3] Moscow Gen Phys Inst, Moscow 119991, Russia
[4] Univ Politecn Valencia, ETSII, Dept Appl Math, Valencia 46022, Spain
关键词
Fokker-Planck equation; dusty plasmas;
D O I
10.1002/ctpp.200310050
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Self-consistent and universal description of friction and diffusion for Brownian particles in such various systems as dusty plasma and active particles (e.g., cells in biological systems) is presented. Generalized friction function is determined to describe the friction force itself as well as a drag force in the case of non-zero driven ion velocity in plasmas.
引用
收藏
页码:377 / 380
页数:4
相关论文
共 45 条
[31]   The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm [J].
Runfola, C. ;
Vitali, S. ;
Pagnini, G. .
ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (11)
[32]   From Chemical Langevin Equations to Fokker-Planck Equation: Application of Hodge Decomposition and Klein-Kramers Equation [J].
牟维华 ;
欧阳钟灿 ;
李小青 .
Communications in Theoretical Physics, 2011, 55 (04) :602-604
[33]   From Chemical Langevin Equations to Fokker-Planck Equation: Application of Hodge Decomposition and Klein-Kramers Equation [J].
Mu Wei-Hua ;
Ou-Yang Zhong-Can ;
Li Xiao-Qing .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (04) :602-604
[34]   Numerical solution of the Fokker-Planck equation for fiber suspensions: Application to the Folgar-Tucker-Lipscomb model [J].
Ferec, J. ;
Heniche, M. ;
Heuzey, M. C. ;
Ausias, G. ;
Carreau, P. J. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2008, 155 (1-2) :20-29
[35]   Time-dependent solutions of Fokker-Planck equation of maximum reduced air-sea coupling climate [J].
Feng, GL ;
Cao, HX .
PROCEEDINGS OF THE CHINA ASSOCIATION FOR SCIENCE AND TECHNOLOGY, VOL 1, NO 1, 2004, :403-411
[36]   Markov models from the square root approximation of the Fokker-Planck equation: calculating the grid-dependent flux [J].
Donati, Luca ;
Weber, Marcus ;
Keller, Bettina G. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1600, 5 (00) :2504-2092-2504-2106
[37]   New fast accurately conservative scheme for solving numerically the time-dependent isotropic Fokker-Planck equation [J].
Boukandou-Mombo, Charlotte ;
Bakrim, Hassan ;
Claustre, Jonathan ;
Margot, Joelle ;
Matte, Jean-Pierre ;
Vidal, Francois .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 220 :173-180
[38]   Markov models from the square root approximation of the Fokker-Planck equation: calculating the grid-dependent flux [J].
Donati, Luca ;
Weber, Marcus ;
Keller, Bettina G. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (11)
[40]   Stochastic control with state constraints via the Fokker-Planck equation. Application to renewable energy plants with batteries [J].
Bermudez, Alfredo ;
Padin, Iago .
COMPTES RENDUS MECANIQUE, 2023, 351 :89-110