Galois action on mapping class groups

被引:2
作者
Iijima, Yu [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
mapping class group; outer Galois representation; hyperbolic curve; COMBINATORIAL ANABELIAN GEOMETRY; MONODROMY REPRESENTATIONS; CURVES;
D O I
10.32917/hmj/1439219709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l be a prime number. In the paper, we study the outer Galois action on the profinite and the relative pro-l completions of mapping class groups of pointed orientable topological surfaces. In the profinite case, we prove that the outer Galois action is faithful. In the pro-l case, we prove that the kernel of the outer Galois action has certain stability properties with respect to the genus and the number of punctures. Also, we prove a variant of the above results for arbitrary families of curves.
引用
收藏
页码:207 / 230
页数:24
相关论文
共 34 条
[21]   The local pro-p anabelian geometry of curves [J].
Mochizuki, S .
INVENTIONES MATHEMATICAE, 1999, 138 (02) :319-423
[22]  
Mochizuki S., 1996, J. Math. Sci. Univ. Tokyo, V3, P571
[23]  
Mochizuki S., 2008, Hokkaido Math. J., V75, P131
[24]   A combinatorial version of the Grothendieck conjecture [J].
Mochizuki, Shinichi .
TOHOKU MATHEMATICAL JOURNAL, 2007, 59 (03) :455-479
[25]   Coupling of universal monodromy representations of Galois-Teichmuller modular groups [J].
Nakamura, H .
MATHEMATISCHE ANNALEN, 1996, 304 (01) :99-119
[26]   SOME STABILITY PROPERTIES OF TEICHMULLER MODULAR FUNCTION-FIELDS WITH PRO-L WEIGHT STRUCTURES [J].
NAKAMURA, H ;
TAKAO, N ;
UENO, R .
MATHEMATISCHE ANNALEN, 1995, 302 (02) :197-213
[27]  
Oda Takayuki, 1993, ARB 9 15 JUIN 1993
[28]  
Paris L, 2009, T AM MATH SOC, V361, P2487
[29]  
Revetements etales et groupe fondamental. Springer- Verlag Berlin, 1971, LECT NOTES MATH, V224
[30]  
Ribes L., 2010, A Series of Modern Surveys in Mathematics, V40